Sparse MCMC gpc finite element methods for Bayesian inverse problems
暂无分享,去创建一个
[1] A. Stuart,et al. Spectral gaps for a Metropolis–Hastings algorithm in infinite dimensions , 2011, 1112.1392.
[2] Rolf Stenberg,et al. The multi-level Monte Carlo finite element method for a stochastic Brinkman Problem , 2013, Numerische Mathematik.
[3] G. Roberts,et al. MCMC Methods for Functions: ModifyingOld Algorithms to Make Them Faster , 2012, 1202.0709.
[4] Christoph Schwab,et al. REGULARITY AND GENERALIZED POLYNOMIAL CHAOS APPROXIMATION OF PARAMETRIC AND RANDOM SECOND-ORDER HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS , 2012 .
[5] Siddhartha Mishra,et al. Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data , 2012, Math. Comput..
[6] R. DeVore,et al. ANALYTIC REGULARITY AND POLYNOMIAL APPROXIMATION OF PARAMETRIC AND STOCHASTIC ELLIPTIC PDE'S , 2011 .
[7] Marcel Bieri,et al. A Sparse Composite Collocation Finite Element Method for Elliptic SPDEs , 2011, SIAM J. Numer. Anal..
[8] Andrea Barth,et al. Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients , 2011, Numerische Mathematik.
[9] Albert Cohen,et al. Sparse adaptive Taylor approximation algorithms for parametric and stochastic elliptic PDEs , 2011 .
[10] Claude Jeffrey Gittelson,et al. Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs* , 2011, Acta Numerica.
[11] A. M. Stuart,et al. Sparse deterministic approximation of Bayesian inverse problems , 2011, 1103.4522.
[12] Christoph Schwab,et al. Regularity and generalized polynomial chaos approximation of parametric and random 2nd order hyperbolic partial differential equations , 2011 .
[13] Claude Jeffrey Gittelson,et al. Adaptive Galerkin methods for parametric and stochastic operator equations , 2011 .
[14] Albert Cohen,et al. Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs , 2010, Found. Comput. Math..
[15] Andrew M. Stuart,et al. Inverse problems: A Bayesian perspective , 2010, Acta Numerica.
[16] James C. Robinson,et al. Bayesian inverse problems for functions and applications to fluid mechanics , 2009 .
[17] Christoph Schwab,et al. Sparse Tensor Discretization of Elliptic sPDEs , 2009, SIAM J. Sci. Comput..
[18] Y. Marzouk,et al. A stochastic collocation approach to Bayesian inference in inverse problems , 2009 .
[19] Habib N. Najm,et al. Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems , 2008, J. Comput. Phys..
[20] Michael B. Giles,et al. Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..
[21] Habib N. Najm,et al. Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..
[22] Rob Stevenson,et al. Finite‐element wavelets on manifolds , 2003 .
[23] L. Tierney. A note on Metropolis-Hastings kernels for general state spaces , 1998 .