Sparse MCMC gpc finite element methods for Bayesian inverse problems

[1]  A. Stuart,et al.  Spectral gaps for a Metropolis–Hastings algorithm in infinite dimensions , 2011, 1112.1392.

[2]  Rolf Stenberg,et al.  The multi-level Monte Carlo finite element method for a stochastic Brinkman Problem , 2013, Numerische Mathematik.

[3]  G. Roberts,et al.  MCMC Methods for Functions: ModifyingOld Algorithms to Make Them Faster , 2012, 1202.0709.

[4]  Christoph Schwab,et al.  REGULARITY AND GENERALIZED POLYNOMIAL CHAOS APPROXIMATION OF PARAMETRIC AND RANDOM SECOND-ORDER HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS , 2012 .

[5]  Siddhartha Mishra,et al.  Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data , 2012, Math. Comput..

[6]  R. DeVore,et al.  ANALYTIC REGULARITY AND POLYNOMIAL APPROXIMATION OF PARAMETRIC AND STOCHASTIC ELLIPTIC PDE'S , 2011 .

[7]  Marcel Bieri,et al.  A Sparse Composite Collocation Finite Element Method for Elliptic SPDEs , 2011, SIAM J. Numer. Anal..

[8]  Andrea Barth,et al.  Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients , 2011, Numerische Mathematik.

[9]  Albert Cohen,et al.  Sparse adaptive Taylor approximation algorithms for parametric and stochastic elliptic PDEs , 2011 .

[10]  Claude Jeffrey Gittelson,et al.  Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs* , 2011, Acta Numerica.

[11]  A. M. Stuart,et al.  Sparse deterministic approximation of Bayesian inverse problems , 2011, 1103.4522.

[12]  Christoph Schwab,et al.  Regularity and generalized polynomial chaos approximation of parametric and random 2nd order hyperbolic partial differential equations , 2011 .

[13]  Claude Jeffrey Gittelson,et al.  Adaptive Galerkin methods for parametric and stochastic operator equations , 2011 .

[14]  Albert Cohen,et al.  Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs , 2010, Found. Comput. Math..

[15]  Andrew M. Stuart,et al.  Inverse problems: A Bayesian perspective , 2010, Acta Numerica.

[16]  James C. Robinson,et al.  Bayesian inverse problems for functions and applications to fluid mechanics , 2009 .

[17]  Christoph Schwab,et al.  Sparse Tensor Discretization of Elliptic sPDEs , 2009, SIAM J. Sci. Comput..

[18]  Y. Marzouk,et al.  A stochastic collocation approach to Bayesian inference in inverse problems , 2009 .

[19]  Habib N. Najm,et al.  Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems , 2008, J. Comput. Phys..

[20]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[21]  Habib N. Najm,et al.  Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..

[22]  Rob Stevenson,et al.  Finite‐element wavelets on manifolds , 2003 .

[23]  L. Tierney A note on Metropolis-Hastings kernels for general state spaces , 1998 .