Ancestor Sampling for Particle Gibbs
暂无分享,去创建一个
[1] G. Bierman. Fixed interval smoothing with discrete measurements , 1972 .
[2] Jun S. Liu,et al. Sequential importance sampling for nonparametric Bayes models: The next generation , 1999 .
[3] M. Pitt,et al. Filtering via Simulation: Auxiliary Particle Filters , 1999 .
[4] Simon J. Godsill,et al. On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..
[5] Jun S. Liu,et al. Mixture Kalman filters , 2000 .
[6] Neil J. Gordon,et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..
[7] Simon J. Godsill,et al. Monte Carlo smoothing with application to audio signal enhancement , 2002, IEEE Trans. Signal Process..
[8] A. Doucet,et al. Monte Carlo Smoothing for Nonlinear Time Series , 2004, Journal of the American Statistical Association.
[9] Paul Fearnhead,et al. Particle filters for mixture models with an unknown number of components , 2004, Stat. Comput..
[10] Branko Ristic,et al. Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .
[11] Branko Ristic,et al. Bearings-Only Tracking of Manoeuvring Targets Using Particle Filters , 2004, EURASIP J. Adv. Signal Process..
[12] Thomas B. Schön,et al. Marginalized particle filters for mixed linear/nonlinear state-space models , 2005, IEEE Transactions on Signal Processing.
[13] Yee Whye Teh,et al. Bayesian Agglomerative Clustering with Coalescents , 2007, NIPS.
[14] A. Doucet,et al. A Tutorial on Particle Filtering and Smoothing: Fifteen years later , 2008 .
[15] D. V. van Dyk,et al. Partially Collapsed Gibbs Samplers , 2008 .
[16] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[17] A. Doucet,et al. Efficient Bayesian Inference for Switching State-Space Models using Discrete Particle Markov Chain Monte Carlo Methods , 2010, 1011.2437.
[18] A. Doucet,et al. Particle Markov chain Monte Carlo methods , 2010 .
[19] Fredrik Lindsten,et al. On the use of backward simulation in the particle Gibbs sampler , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[20] S. Godsill,et al. A Backward-Simulation Based Rao-Blackwellized Particle Smoother for Conditionally Linear Gaussian Models , 2012 .
[21] Michael I. Jordan,et al. Phylogenetic Inference via Sequential Monte Carlo , 2012, Systematic biology.