Single-Molecule Studies of Biomolecules

Imaging biological processes at the single-molecule scale enables the direct observation of the temporal and spatial dynamics of cellular processes. This relatively new branch of biophysical investigation, which was founded on a platform of physics and chemistry research, is pushing forward the frontiers of medical science by providing unprecedented new illuminations into the molecular basis of life. Although it is far from comprehensive, this article provides the advanced reader with a review of single-molecule methods, as well as a discussion of the aims, considerations, achievements, and future directions of this field in the context of ongoing investigations of structure–function relationships inherent to biomolecules.

[1]  W. E. Moerner,et al.  ADP-induced rocking of the kinesin motor domain revealed by single-molecule fluorescence polarization microscopy , 2001, Nature Structural Biology.

[2]  S. McKinney,et al.  Nonblinking and long-lasting single-molecule fluorescence imaging , 2006, Nature Methods.

[3]  K. Schulten,et al.  Fluorescence-Force Spectroscopy Maps Two-Dimensional Reaction Landscape of the Holliday Junction , 2007, Science.

[4]  S. McKinney,et al.  Analysis of single-molecule FRET trajectories using hidden Markov modeling. , 2006, Biophysical journal.

[5]  Peter Michaely,et al.  Nanospring behaviour of ankyrin repeats , 2006, Nature.

[6]  Michael Sheetz,et al.  Magnetic tweezers in cell biology. , 2007, Methods in cell biology.

[7]  R. Hochstrasser,et al.  Peptidyl transferase center activity observed in single ribosomes. , 1999, Journal of molecular biology.

[8]  Kiwamu Saito,et al.  Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution , 1995, Nature.

[9]  R. Tsien,et al.  green fluorescent protein , 2020, Catalysis from A to Z.

[10]  L. Isaksson,et al.  Morphological variation of individual Escherichia coli 50S ribosomal subunits in situ, as revealed by cryo-electron tomography. , 2004, Experimental cell research.

[11]  Julio M Fernandez,et al.  Single-molecule force spectroscopy reveals signatures of glassy dynamics in the energy landscape of ubiquitin , 2006 .

[12]  Paul Matsudaira,et al.  Detecting force-induced molecular transitions with fluorescence resonant energy transfer. , 2007, Angewandte Chemie.

[13]  M. Sheetz,et al.  Tracking kinesin-driven movements with nanometre-scale precision , 1988, Nature.

[14]  Antoine M. van Oijen,et al.  Ever-fluctuating single enzyme molecules: Michaelis-Menten equation revisited , 2006, Nature chemical biology.

[15]  R Y Tsien,et al.  Specific covalent labeling of recombinant protein molecules inside live cells. , 1998, Science.

[16]  M. Sisido,et al.  A non‐natural amino acid for efficient incorporation into proteins as a sensitive fluorescent probe , 2001, FEBS letters.

[17]  J. Puglisi,et al.  tRNA selection and kinetic proofreading in translation , 2004, Nature Structural &Molecular Biology.

[18]  Dong-Myung Kim,et al.  Fluorescent labeling of cell-free synthesized proteins by incorporation of fluorophore-conjugated nonnatural amino acids. , 2007, Analytical biochemistry.

[19]  Nam Ki Lee,et al.  Single-molecule approach to molecular biology in living bacterial cells. , 2008, Annual review of biophysics.

[20]  X. Zhuang Single-molecule RNA science. , 2005, Annual review of biophysics and biomolecular structure.

[21]  Taekjip Ha,et al.  Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase , 2002, Nature.

[22]  S. Weiss,et al.  Single-molecule fluorescence studies of protein folding and conformational dynamics. , 2006, Chemical reviews.

[23]  N. Friedman,et al.  Stochastic protein expression in individual cells at the single molecule level , 2006, Nature.

[24]  P. Schultz,et al.  A genetically encoded fluorescent amino acid. , 2006, Journal of the American Chemical Society.

[25]  M. Rief,et al.  Direct observation of active protein folding using lock-in force spectroscopy. , 2007, Biophysical journal.

[26]  C. Bustamante,et al.  Mechanics and structure of titin oligomers explored with atomic force microscopy. , 2003, Biochimica et biophysica acta.

[27]  Shimon Weiss,et al.  Initial Transcription by RNA Polymerase Proceeds Through a DNA-Scrunching Mechanism , 2006, Science.

[28]  W E Moerner,et al.  Diffusion of lipid-like single-molecule fluorophores in the cell membrane. , 2006, The journal of physical chemistry. B.

[29]  X. Xie,et al.  Single-molecule enzymatic dynamics. , 1998, Science.

[30]  M. Rodnina,et al.  Mechanisms of elongation on the ribosome: dynamics of a macromolecular machine. , 2004, Biochemical Society transactions.

[31]  D. F. Ogletree,et al.  Probing the interaction between single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor , 1996, Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference.

[32]  J. van Noort,et al.  Subpiconewton dynamic force spectroscopy using magnetic tweezers. , 2008, Biophysical journal.

[33]  Steven Chu,et al.  tRNA dynamics on the ribosome during translation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Masayuki Abe,et al.  Chemical identification of individual surface atoms by atomic force microscopy , 2007, Nature.

[35]  Chris H Wiggins,et al.  Fast dynamics of supercoiled DNA revealed by single-molecule experiments , 2007, Proceedings of the National Academy of Sciences.

[36]  J. Spudich,et al.  Single molecule high-resolution colocalization of Cy3 and Cy5 attached to macromolecules measures intramolecular distances through time. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[37]  T. Ha,et al.  Single-molecule fluorescence resonance energy transfer. , 2001, Methods.

[38]  D. Lilley,et al.  Vesicle encapsulation studies reveal that single molecule ribozyme heterogeneities are intrinsic. , 2004, Biophysical journal.

[39]  W. Greenleaf,et al.  High-resolution, single-molecule measurements of biomolecular motion. , 2007, Annual review of biophysics and biomolecular structure.

[40]  J. Zlatanova,et al.  Single molecule force spectroscopy in biology using the atomic force microscope. , 2000, Progress in biophysics and molecular biology.

[41]  B. Sakmann,et al.  Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches , 1981, Pflügers Archiv.

[42]  W. Baumeister,et al.  Macromolecular Architecture in Eukaryotic Cells Visualized by Cryoelectron Tomography , 2002, Science.

[43]  Axel T. Brunger,et al.  Single-molecule studies of SNARE complex assembly reveal parallel and antiparallel configurations , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[44]  S. Yokoyama,et al.  Site-specific fluorescent labeling of RNA molecules by specific transcription using unnatural base pairs. , 2005, Journal of the American Chemical Society.

[45]  Paul R. Selvin,et al.  Myosin V Walks Hand-Over-Hand: Single Fluorophore Imaging with 1.5-nm Localization , 2003, Science.

[46]  T. Muir Semisynthesis of proteins by expressed protein ligation. , 2003, Annual review of biochemistry.

[47]  Eric C Greene,et al.  Organized arrays of individual DNA molecules tethered to supported lipid bilayers. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[48]  B. Cooperman,et al.  Protein synthesis by single ribosomes. , 2003, RNA.

[49]  C. Joo,et al.  Fueling protein–DNA interactions inside porous nanocontainers , 2007, Proceedings of the National Academy of Sciences.

[50]  Ignacio Tinoco,et al.  Following translation by single ribosomes one codon at a time , 2008, Nature.

[51]  Michael D. Stone,et al.  Stepwise protein-mediated RNA folding directs assembly of telomerase ribonucleoprotein , 2007, Nature.

[52]  T. Ha,et al.  Bridging conformational dynamics and function using single-molecule spectroscopy. , 2006, Structure.

[53]  X. Xie,et al.  Optical studies of single molecules at room temperature. , 1998, Annual review of physical chemistry.

[54]  W. Stemmer,et al.  Improved Green Fluorescent Protein by Molecular Evolution Using DNA Shuffling , 1996, Nature Biotechnology.

[55]  E. Greene,et al.  Long-distance lateral diffusion of human Rad51 on double-stranded DNA , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[56]  X. Zhuang,et al.  Correlating Structural Dynamics and Function in Single Ribozyme Molecules , 2002, Science.

[57]  Carlos Bustamante,et al.  Recent advances in optical tweezers. , 2008, Annual review of biochemistry.

[58]  B. Chait,et al.  Domain-specific incorporation of noninvasive optical probes into recombinant proteins. , 2004, Journal of the American Chemical Society.

[59]  R. Benesch,et al.  Enzymatic removal of oxygen for polarography and related methods. , 1953, Science.

[60]  Toshio Yanagida,et al.  Direct observation of single kinesin molecules moving along microtubules , 1996, Nature.

[61]  D. Lohr,et al.  Using atomic force microscopy to study chromatin structure and nucleosome remodeling. , 2007, Methods.

[62]  P. Arimondo,et al.  Single-molecule observations of topotecan-mediated TopIB activity at a unique DNA sequence , 2008, Nucleic acids research.

[63]  M. Visnapuu,et al.  The importance of surfaces in single-molecule bioscience. , 2008, Molecular bioSystems.

[64]  C. Joo,et al.  Advances in single-molecule fluorescence methods for molecular biology. , 2008, Annual review of biochemistry.

[65]  S. Turner,et al.  Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations , 2003, Science.

[66]  Hernando Sosa,et al.  Configuration of the two kinesin motor domains during ATP hydrolysis , 2003, Nature Structural Biology.

[67]  Colin Echeverría Aitken,et al.  An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. , 2008, Biophysical journal.

[68]  D. Lohr,et al.  Solution AFM studies of human Swi-Snf and its interactions with MMTV DNA and chromatin. , 2005, Biophysical journal.

[69]  W E Moerner,et al.  Single-molecule fluorescence spectroscopy and microscopy of biomolecular motors. , 2004, Annual review of physical chemistry.

[70]  Joachim Frank,et al.  Electron tomographic and other approaches for imaging molecular machines , 2001, Current Opinion in Neurobiology.

[71]  R E Glass,et al.  Visualization of single molecules of RNA polymerase sliding along DNA. , 1993, Science.

[72]  Cheng Zhu,et al.  Direct observation of catch bonds involving cell-adhesion molecules , 2003, Nature.

[73]  Takeharu Nagai,et al.  Shift anticipated in DNA microarray market , 2002, Nature Biotechnology.

[74]  X. Zhuang,et al.  Ligand-induced conformational changes observed in single RNA molecules. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[75]  E. Elson,et al.  Fluorescence correlation spectroscopy. I. Conceptual basis and theory , 1974 .

[76]  S. Quake,et al.  Single-Molecule DNA Sequencing of a Viral Genome , 2008, Science.

[77]  P. Tavan,et al.  Ligand Binding: Molecular Mechanics Calculation of the Streptavidin-Biotin Rupture Force , 1996, Science.

[78]  Taekjip Ha,et al.  Mg2+-dependent conformational change of RNA studied by fluorescence correlation and FRET on immobilized single molecules , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[79]  Samara L. Reck-Peterson,et al.  Force-Induced Bidirectional Stepping of Cytoplasmic Dynein , 2007, Cell.

[80]  Michio Homma,et al.  Direct observation of steps in rotation of the bacterial flagellar motor , 2005, Nature.

[81]  Christian Eggeling,et al.  Strategies to improve photostabilities in ultrasensitive fluorescence spectroscopy. , 2007, The journal of physical chemistry. A.

[82]  Sotaro Uemura,et al.  Peptide bond formation destabilizes Shine–Dalgarno interaction on the ribosome , 2007, Nature.

[83]  R. Vale,et al.  Circularization of mRNA by eukaryotic translation initiation factors. , 1998, Molecular cell.

[84]  R. Ebright,et al.  Site-specific incorporation of fluorescent probes into protein: hexahistidine-tag-mediated fluorescent labeling with (Ni(2+):nitrilotriacetic Acid (n)-fluorochrome conjugates. , 2001, Journal of the American Chemical Society.

[85]  X. Zhuang,et al.  A single-molecule study of RNA catalysis and folding. , 2000, Science.

[86]  Kazuhiko Kinosita,et al.  Direct observation of the rotation of F1-ATPase , 1997, Nature.

[87]  Rahul Roy,et al.  A practical guide to single-molecule FRET , 2008, Nature Methods.

[88]  Niels Galjart,et al.  Cryo electron tomography of vitrified fibroblasts: microtubule plus ends in situ. , 2008, Journal of structural biology.

[89]  R. Lavery,et al.  Wringing out DNA. , 2006, Physical review letters.

[90]  J. Elf,et al.  Probing Transcription Factor Dynamics at the Single-Molecule Level in a Living Cell , 2007, Science.

[91]  L. Stryer,et al.  Energy transfer: a spectroscopic ruler. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[92]  X. Xie,et al.  Probing Gene Expression in Live Cells, One Protein Molecule at a Time , 2006, Science.

[93]  W E Moerner,et al.  Polarized fluorescence microscopy of individual and many kinesin motors bound to axonemal microtubules. , 2001, Biophysical journal.

[94]  J. Jaiswal,et al.  Potentials and pitfalls of fluorescent quantum dots for biological imaging. , 2004, Trends in cell biology.

[95]  X. Darzacq,et al.  In vivo dynamics of RNA polymerase II transcription , 2007, Nature Structural &Molecular Biology.

[96]  P. Schwille,et al.  Fluorescence correlation spectroscopy: novel variations of an established technique. , 2007, Annual review of biophysics and biomolecular structure.

[97]  G. Wagner,et al.  Translation initiation: structures, mechanisms and evolution , 2004, Quarterly Reviews of Biophysics.

[98]  Ben Fabry,et al.  High-force magnetic tweezers with force feedback for biological applications. , 2007, The Review of scientific instruments.

[99]  H. Berg,et al.  Torque generated by the flagellar motor of Escherichia coli. , 1993, Biophysical journal.

[100]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[101]  Peter G Schultz,et al.  Efficient incorporation of unnatural amino acids into proteins in Escherichia coli , 2006, Nature Methods.

[102]  R. Merkel,et al.  Energy landscapes of receptor–ligand bonds explored with dynamic force spectroscopy , 1999, Nature.

[103]  T. Strick,et al.  Twisting and stretching single DNA molecules. , 2000, Progress in biophysics and molecular biology.

[104]  M. Howarth,et al.  Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase , 2005, Nature Methods.

[105]  W. Greenleaf,et al.  Single-molecule studies of RNA polymerase: motoring along. , 2008, Annual review of biochemistry.

[106]  S. Quake,et al.  Sequence information can be obtained from single DNA molecules , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[107]  D. Lilley,et al.  Structural dynamics of individual Holliday junctions , 2003, Nature Structural Biology.

[108]  E. Cox,et al.  Real-Time Kinetics of Gene Activity in Individual Bacteria , 2005, Cell.

[109]  X. Xie,et al.  Single-molecule approach to dispersed kinetics and dynamic disorder: Probing conformational fluctuation and enzymatic dynamics , 2002 .

[110]  C. Larabell,et al.  Quantum dots as cellular probes. , 2005, Annual review of biomedical engineering.

[111]  Nathan O'Connor,et al.  Identification of two distinct hybrid state intermediates on the ribosome. , 2007, Molecular cell.

[112]  Scott Forth,et al.  Nanofabricated quartz cylinders for angular trapping: DNA supercoiling torque detection , 2007, Nature Methods.