Gauged Sobolev inequalities

We present two-scale Morrey–Sobolev inequalities for measure-valued Lagrangeans on quasi-metric balls, scaled according to refined power laws. The fine tuning is given by suitable gauge functions, typically of logarithmic type. Fractal examples with fluctuating geometry are described. †Dedicated to Ebba Swantje

[1]  Ronald R. Coifman,et al.  Analyse harmonique non-commutative sur certains espaces homogènes : étude de certaines intégrales singulières , 1971 .

[2]  M. Barlow,et al.  Transition density estimates for Brownian motion on scale irregular Sierpinski gaskets , 1997 .

[3]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[4]  Jaak Peetre Espaces d'interpolation et théorème de Soboleff , 1966 .

[5]  E. Stein,et al.  Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .

[6]  R. Wheeden,et al.  Self-Improving Properties of John-Nirenberg and Poincare Inequalities on Spaces of Homogeneous Type , 1998 .

[7]  L. Hedberg On certain convolution inequalities , 1972 .

[8]  U. Mosco,et al.  Sobolev and isoperimetric inequalities for Dirichlet forms on homogeneous spaces , 1995 .

[9]  David Jerison,et al.  Subelliptic, second order differential operators , 1987 .

[10]  G. G. Lorentz,et al.  On the theory of spaces $\Lambda$. , 1951 .

[11]  R. Daniel Mauldin,et al.  Hausdorff dimension in graph directed constructions , 1988 .

[12]  A. Grigor’yan Isoperimetric inequalities and capacities on Riemannian manifolds , 1999 .

[13]  Richard O’Neil,et al.  Convolution operators and $L(p,q)$ spaces , 1963 .

[14]  N. Varopoulos Sobolev inequalities on Lie groups and symmetric spaces , 1989 .

[15]  Umberto Mosco,et al.  Composite media and asymptotic dirichlet forms , 1994 .

[16]  H. Triebel Theory of Function Spaces III , 2008 .

[17]  Ronald R. Coifman,et al.  Analyse Hamonique Non-Commutative sur Certains Espaces Homogenes , 1971 .

[18]  Piotr Hajłasz,et al.  @ 1996 Kluwer Academic Publishers. Printed in the Netherlands. Sobolev Spaces on an Arbitrary Metric Space , 1994 .

[19]  L. Hedberg,et al.  Function Spaces and Potential Theory , 1995 .

[20]  M. Gromov,et al.  Harmonic Maps between Riemannian Polyhedra , 2001 .

[21]  Pekka Koskela,et al.  Sobolev met Poincaré , 2000 .

[22]  D. Jerison The Poincaré inequality for vector fields satisfying Hörmander’s condition , 1986 .

[23]  L. Lemaire HARMONIC MAPS BETWEEN RIEMANNIAN POLYHEDRA (Cambridge Tracts in Mathematics 142) By JAMES EELLS and BENT FUGLEDE: 296 pp., £40.00, ISBN 0-521-77311-3 (Cambridge University Press, 2001). , 2002 .

[24]  L. Saloff-Coste,et al.  A note on Poincaré, Sobolev, and Harnack inequalities , 1992 .

[25]  H. Triebel Theory Of Function Spaces , 1983 .

[26]  A. Chenciner A note by Poincare , 2005 .

[27]  E. Stein,et al.  Balls and metrics defined by vector fields I: Basic properties , 1985 .

[28]  L. Hedberg,et al.  Spectral synthesis in sobolev spaces, and uniqueness of solutions of the Dirichlet problem , 1981 .

[29]  R. Mauldin,et al.  Exact Hausdorff dimension in random recursive constructions. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[30]  W. Ziemer Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation , 1989 .

[31]  Fundamental solutions for second order subelliptic operators , 1986 .

[32]  Vladimir G. Maz´ya Lectures on isoperimetric and capacitary inequalities in the theory of Sobolev spaces , 2003 .

[33]  C. Pérez,et al.  Generalized Poincare inequalities: sharp self-improving properties , 1998 .

[34]  R. Wheeden,et al.  WEIGHTED POINCARE AND SOBOLEV INEQUALITIES AND ESTIMATES FOR WEIGHTED PEANO MAXIMAL FUNCTIONS , 1985 .

[35]  Hans Triebel,et al.  Fractals and Spectra: Related to Fourier Analysis and Function Spaces , 1997 .

[36]  E. Stein,et al.  Hypoelliptic differential operators and nilpotent groups , 1976 .

[37]  U. Mosco,et al.  A Saint-Venant type principle for Dirichlet forms on discontinuous media , 1995 .

[38]  R. Long,et al.  Weighted sobolev inequality and eigenvalue estimates of Schrödinger operators , 1991 .

[39]  J. Bourgain,et al.  Another look at Sobolev spaces , 2001 .

[40]  Yu. L. Ershov,et al.  The theory of A-spaces , 1973 .

[41]  U. Mosco,et al.  Sobolev inequalities on homogeneous spaces , 1995 .

[42]  Nina Uraltseva,et al.  Nonlinear Problems in Mathematical Physics and Related Topics II , 2002 .

[43]  R. Macías,et al.  Lipschitz functions on spaces of homogeneous type , 1979 .

[44]  B. Hambly Brownian motion on a homogeneous random fractal , 1992 .

[45]  W. Ziemer Weakly differentiable functions , 1989 .

[46]  Richard L. Wheeden,et al.  Representation formulas and weighted Poincar inequalities for Hrmander vector fields , 1995 .

[47]  George G. Lorentz,et al.  Some New Functional Spaces , 1950 .

[48]  G. D. Maso,et al.  A pointwise regularity theory for the two-obstacle problem , 1989 .

[49]  H. Helson Harmonic Analysis , 1983 .

[50]  L. Hörmander Hypoelliptic second order differential equations , 1967 .

[51]  Carlos E. Kenig,et al.  The local regularity of solutions of degenerate elliptic equations , 1982 .

[52]  Umberto Mosco,et al.  Harnack Inequalities on Scale Irregular Sierpinski Gaskets , 2002 .

[53]  Béla Bollobás,et al.  Random Graphs , 1985 .

[54]  H. Bauer Measure and integration theory , 2001 .

[55]  H. P. Annales de l'Institut Henri Poincaré , 1931, Nature.