Comprehensive genetic analyses using targeted next-generation sequencing and genotype-phenotype correlations in 53 Japanese patients with osteogenesis imperfecta

[1]  R. Winzenrieth,et al.  TBS as a Tool to Differentiate the Impact of Antiresorptives onCortical and Trabecular Bone in Children With OsteogenesisImperfecta. , 2019, Journal of clinical densitometry : the official journal of the International Society for Clinical Densitometry.

[2]  T. Kaito,et al.  Endoplasmic reticulum stress is induced in growth plate hypertrophic chondrocytes in G610C mouse model of osteogenesis imperfecta. , 2019, Biochemical and biophysical research communications.

[3]  S. Kure,et al.  Responsiveness to pamidronate treatment is not related to the genotype of type I collagen in patients with osteogenesis imperfecta , 2018, Journal of Bone and Mineral Metabolism.

[4]  A. De Paepe,et al.  Genetic analysis of osteogenesis imperfecta in the Palestinian population: molecular screening of 49 affected families , 2017, Molecular genetics & genomic medicine.

[5]  Asan,et al.  Gene mutation spectrum and genotype-phenotype correlation in a cohort of Chinese osteogenesis imperfecta patients revealed by targeted next generation sequencing , 2017, Osteoporosis International.

[6]  F. Glorieux,et al.  DNA sequence analysis in 598 individuals with a clinical diagnosis of osteogenesis imperfecta: diagnostic yield and mutation spectrum , 2016, Osteoporosis International.

[7]  D. Eyre,et al.  MBTPS2 mutations cause defective regulated intramembrane proteolysis in X-linked osteogenesis imperfecta , 2016, Nature Communications.

[8]  E. Schoenau,et al.  Children with severe Osteogenesis imperfecta and short stature present on average with normal IGF-I and IGFBP-3 levels , 2016, Journal of pediatric endocrinology & metabolism : JPEM.

[9]  A. Forlino,et al.  Osteogenesis imperfecta , 2016, The Lancet.

[10]  G. Mori,et al.  Impaired bone remodeling in children with osteogenesis imperfecta treated and untreated with bisphosphonates: the role of DKK1, RANKL, and TNF-α , 2016, Osteoporosis International.

[11]  Sheila Unger,et al.  Nosology and classification of genetic skeletal disorders: 2015 revision , 2015, American journal of medical genetics. Part A.

[12]  M. Swanson,et al.  RNA mis-splicing in disease , 2015, Nature Reviews Genetics.

[13]  C. Rubin,et al.  Genetic epidemiology, prevalence, and genotype–phenotype correlations in the Swedish population with osteogenesis imperfecta , 2015, European Journal of Human Genetics.

[14]  M. Tétreault,et al.  Recessive osteogenesis imperfecta caused by missense mutations in SPARC. , 2015, American journal of human genetics.

[15]  D. Hans,et al.  Bone structure assessed by HR-pQCT, TBS and DXL in adult patients with different types of osteogenesis imperfecta , 2015, Osteoporosis International.

[16]  C. Rubin,et al.  Genetic epidemiology, prevalence, and genotype–phenotype correlations in the Swedish population with osteogenesis imperfecta , 2015, European Journal of Human Genetics.

[17]  B. Zemel,et al.  Bone mineral content and density of the lumbar spine of infants and toddlers: Influence of age, sex, race, growth, and human milk feeding , 2013, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[18]  F. Glorieux,et al.  Osteogenesis imperfecta type V: marked phenotypic variability despite the presence of the IFITM5 c.−14C>T mutation in all patients , 2012, Journal of Medical Genetics.

[19]  F. Alkuraya,et al.  Study of autosomal recessive osteogenesis imperfecta in Arabia reveals a novel locus defined by TMEM38B mutation , 2012, Journal of Medical Genetics.

[20]  In Ho Choi,et al.  A single recurrent mutation in the 5'-UTR of IFITM5 causes osteogenesis imperfecta type V. , 2012, American journal of human genetics.

[21]  S. Bohlander,et al.  A mutation in the 5'-UTR of IFITM5 creates an in-frame start codon and causes autosomal-dominant osteogenesis imperfecta type V with hyperplastic callus. , 2012, American journal of human genetics.

[22]  W. Leslie,et al.  Bone microarchitecture assessed by TBS predicts osteoporotic fractures independent of bone density: The manitoba study , 2011, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[23]  T. Hangartner,et al.  Revised reference curves for bone mineral content and areal bone mineral density according to age and sex for black and non-black children: results of the bone mineral density in childhood study. , 2011, The Journal of clinical endocrinology and metabolism.

[24]  Laurent Pothuaud,et al.  Correlations between trabecular bone score, measured using anteroposterior dual-energy X-ray absorptiometry acquisition, and 3-dimensional parameters of bone microarchitecture: an experimental study on human cadaver vertebrae. , 2011, Journal of clinical densitometry : the official journal of the International Society for Clinical Densitometry.

[25]  Joan C. Marini,et al.  New perspectives on osteogenesis imperfecta , 2011, Nature Reviews Endocrinology.

[26]  F. Glorieux,et al.  Genotype–phenotype correlations in nonlethal osteogenesis imperfecta caused by mutations in the helical domain of collagen type I , 2010, European Journal of Human Genetics.

[27]  F. Glorieux,et al.  Relationship between genotype and skeletal phenotype in children and adolescents with osteogenesis imperfecta , 2009, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[28]  L. Pothuaud,et al.  Evaluation of the potential use of trabecular bone score to complement bone mineral density in the diagnosis of osteoporosis: a preliminary spine BMD-matched, case-control study. , 2009, Journal of clinical densitometry : the official journal of the International Society for Clinical Densitometry.

[29]  Hiroyuki Tanaka,et al.  Mutations in type I collagen genes in Japanese osteogenesis imperfecta patients , 2007, Pediatrics international : official journal of the Japan Pediatric Society.

[30]  B. Zemel,et al.  The bone mineral density in childhood study: bone mineral content and density according to age, sex, and race. , 2007, The Journal of clinical endocrinology and metabolism.

[31]  F. Glorieux,et al.  Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans , 2007, Human mutation.

[32]  A. Friedman Important Determinants of Bone Strength: Beyond Bone Mineral Density , 2006, Journal of clinical rheumatology : practical reports on rheumatic & musculoskeletal diseases.

[33]  F. Glorieux,et al.  High and low density in the same bone: a study on children and adolescents with mild osteogenesis imperfecta. , 2005, Bone.

[34]  Susan R. Johnson,et al.  Osteoporosis prevention, diagnosis, and therapy. , 2001, JAMA.

[35]  A. Forlino,et al.  Osteogenesis imperfecta: prospects for molecular therapeutics. , 2000, Molecular genetics and metabolism.

[36]  F. Glorieux,et al.  Static and dynamic bone histomorphometry in children with osteogenesis imperfecta. , 2000, Bone.

[37]  M. Willing,et al.  Premature chain termination is a unifying mechanism for COL1A1 null alleles in osteogenesis imperfecta type I cell strains. , 1996, American journal of human genetics.

[38]  J. Kanis Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism , 1994 .

[39]  P. Byers,et al.  Molecular heterogeneity in osteogenesis imperfecta type I. , 1993, American journal of medical genetics.

[40]  T. Pihlajaniemi,et al.  Synthesis of a shortened pro-alpha 2(I) chain and decreased synthesis of pro-alpha 2(I) chains in a proband with osteogenesis imperfecta. , 1983, The Journal of biological chemistry.

[41]  D. Sillence,et al.  Genetic heterogeneity in osteogenesis imperfecta. , 1979, Journal of medical genetics.

[42]  Julian R. Raxworthy,et al.  Static and dynamic , 2006 .

[43]  W. Reinus,et al.  Differing Lumbar Vertebral Mineralization Rates in Ambulatory Pediatric Patients with Osteogenesis Imperfecta , 1998, Calcified Tissue International.

[44]  P. Esposito,et al.  Osteogenesis Imperfecta. , 1928, Proceedings of the Royal Society of Medicine.