Online monitoring of nonlinear multiple mode processes based on adaptive local model approach

[1]  Barry Lennox,et al.  Monitoring a complex refining process using multivariate statistics , 2008 .

[2]  Nina F. Thornhill,et al.  Advances and new directions in plant-wide disturbance detection and diagnosis , 2007 .

[3]  Zhi-huan Song,et al.  Process Monitoring Based on Independent Component Analysis - Principal Component Analysis ( ICA - PCA ) and Similarity Factors , 2007 .

[4]  Chonghun Han,et al.  On-Line Process State Classification for Adaptive Monitoring , 2006 .

[5]  Chonghun Han,et al.  Robust Recursive Principal Component Analysis Modeling for Adaptive Monitoring , 2006 .

[6]  George W. Irwin,et al.  Introduction of a nonlinearity measure for principal component models , 2005, Comput. Chem. Eng..

[7]  G. Irwin,et al.  Process monitoring approach using fast moving window PCA , 2005 .

[8]  Theodora Kourti,et al.  Application of latent variable methods to process control and multivariate statistical process control in industry , 2005 .

[9]  Min-Sen Chiu,et al.  Nonlinear process monitoring using JITL-PCA , 2005 .

[10]  Jin Hyun Park,et al.  Fault detection and identification of nonlinear processes based on kernel PCA , 2005 .

[11]  In-Beum Lee,et al.  Fault identification for process monitoring using kernel principal component analysis , 2005 .

[12]  S. Zhao,et al.  Monitoring of Processes with Multiple Operating Modes through Multiple Principle Component Analysis Models , 2004 .

[13]  ChangKyoo Yoo,et al.  Statistical process monitoring with independent component analysis , 2004 .

[14]  M. Chiu,et al.  A new data-based methodology for nonlinear process modeling , 2004 .

[15]  ChangKyoo Yoo,et al.  Statistical monitoring of dynamic processes based on dynamic independent component analysis , 2004 .

[16]  W. Ho,et al.  Dynamic principal component analysis based methodology for clustering process states in agile chemical plants , 2004 .

[17]  C. Yoo,et al.  Nonlinear process monitoring using kernel principal component analysis , 2004 .

[18]  Manabu Kano,et al.  Combined Multivariate Statistical Process Control , 2004 .

[19]  Sirish L. Shah,et al.  Model Identification and Error Covariance Matrix Estimation from Noisy Data Using PCA , 2004 .

[20]  Uwe Kruger,et al.  Recursive partial least squares algorithms for monitoring complex industrial processes , 2003 .

[21]  Rajagopalan Srinivasan,et al.  Multi-linear model-based fault detection during process transitions , 2003 .

[22]  Rajagopalan Srinivasan,et al.  Fault detection during process transitions: a model-based approach , 2003 .

[23]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machines , 2002 .

[24]  Mauro Birattari,et al.  The local paradigm for modeling and control: from neuro-fuzzy to lazy learning , 2001, Fuzzy Sets Syst..

[25]  Leo H. Chiang,et al.  Fault Detection and Diagnosis in Industrial Systems , 2001 .

[26]  Dale E. Seborg,et al.  Identification of the Tennessee Eastman challenge process with subspace methods , 2000 .

[27]  Junghui Chen,et al.  Using mixture principal component analysis networks to extract fuzzy rules from data , 2000 .

[28]  Erkki Oja,et al.  Independent component analysis: algorithms and applications , 2000, Neural Networks.

[29]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[30]  Weihua Li,et al.  Recursive PCA for adaptive process monitoring , 1999 .

[31]  B. Bakshi Multiscale PCA with application to multivariate statistical process monitoring , 1998 .

[32]  Chonghun Han,et al.  Real-time monitoring for a process with multiple operating modes , 1998 .

[33]  S. Qin Recursive PLS algorithms for adaptive data modeling , 1998 .

[34]  Bhupinder S. Dayal,et al.  Recursive exponentially weighted PLS and its applications to adaptive control and prediction , 1997 .

[35]  T. McAvoy,et al.  Nonlinear principal component analysis—Based on principal curves and neural networks , 1996 .

[36]  Christos Georgakis,et al.  Disturbance detection and isolation by dynamic principal component analysis , 1995 .

[37]  John F. MacGregor,et al.  Multi-way partial least squares in monitoring batch processes , 1995 .

[38]  Christos Georgakis,et al.  Plant-wide control of the Tennessee Eastman problem , 1995 .

[39]  John F. MacGregor,et al.  Multivariate SPC charts for monitoring batch processes , 1995 .

[40]  J. Macgregor,et al.  Monitoring batch processes using multiway principal component analysis , 1994 .

[41]  Mark A. Kramer,et al.  Autoassociative neural networks , 1992 .

[42]  Thomas E. Marlin,et al.  Multivariate statistical monitoring of process operating performance , 1991 .