Decomposition Method with a Variable Parameter for a Class of Monotone Variational Inequality Problems
暂无分享,去创建一个
S. Wang | L. Liao | Songhu Wang | Li-Zhi Liao
[1] V. F. Demʹi︠a︡nov,et al. Introduction to minimax , 1976 .
[2] V. F. Demʹi︠a︡nov,et al. Introduction to minimax , 1976 .
[3] M. Fortin,et al. Augmented Lagrangian methods : applications to the numerical solution of boundary-value problems , 1983 .
[4] R. Glowinski,et al. Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .
[5] H. Uzawa,et al. Preference, production, and capital: Iterative methods for concave programming , 1989 .
[6] Patrick T. Harker,et al. Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications , 1990, Math. Program..
[7] Masao Fukushima,et al. Application of the alternating direction method of multipliers to separable convex programming problems , 1992, Comput. Optim. Appl..
[8] B. He. A class of projection and contraction methods for monotone variational inequalities , 1997 .
[9] Robert R. Meyer,et al. A variable-penalty alternating directions method for convex optimization , 1998, Math. Program..
[10] Bingsheng He,et al. Inexact implicit methods for monotone general variational inequalities , 1999, Math. Program..
[11] Hai Yang,et al. Decomposition Method for a Class of Monotone Variational Inequality Problems , 1999 .
[12] B. He,et al. Alternating Direction Method with Self-Adaptive Penalty Parameters for Monotone Variational Inequalities , 2000 .