Observation and Control of Organic Systems

Organic Computing (OC) assumes that current trends and recent developments in computing, like growing interconnectedness and increasing computational power, pose new challenges to designers and users. In order to tackle the upcoming demands, OC has the vision to make systems more life-like (organic) by endowing them with abilities such as self-organisation, self-configuration, self-repair, or adaptation. Distributing computational intelligence by introducing concepts like self-organisation relieves the designer from exactly specifying the low-level system behaviour in all possible situations. In addition, the user has the possibility to define a few high-level goals, rather than having to manipulate many low-level parameters.

[1]  Jörg Hähner,et al.  Dynamic Control of Mobile Ad-hoc Networks - Network Protocol Parameter Adaptation using Organic Network Control , 2010, ICINCO.

[2]  Marcus Geimer,et al.  Organic computing in off-highway machines , 2010, SOAR '10.

[3]  Uwe Brinkschulte Architecture of Computing Systems - ARCS 2008, 21st International Conference, Dresden, Germany, February 25-28, 2008, Proceedings , 2008, ARCS.

[4]  Urban Maximilian Richter Controlled self-organisation using learning classifier systems , 2009 .

[5]  Jörg Hähner,et al.  Organic traffic light control for urban road networks , 2009, Int. J. Auton. Adapt. Commun. Syst..

[6]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[7]  Hartmut Schmeck,et al.  Organic Computing – Addressing Complexity by Controlled Self-Organization , 2006, Second International Symposium on Leveraging Applications of Formal Methods, Verification and Validation (isola 2006).

[8]  Jeffrey O. Kephart,et al.  The Vision of Autonomic Computing , 2003, Computer.

[9]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[10]  Martin V. Butz,et al.  Rule-Based Evolutionary Online Learning Systems - A Principled Approach to LCS Analysis and Design , 2006, Studies in Fuzziness and Soft Computing.

[11]  Christian Müller-Schloer,et al.  Quantitative Emergence , 2006, 2006 IEEE Mountain Workshop on Adaptive and Learning Systems.

[12]  Hartmut Schmeck,et al.  Decentralized Energy-Management to Control Smart-Home Architectures , 2010, ARCS.

[13]  John J. Grefenstette,et al.  An Approach to Anytime Learning , 1992, ML.

[14]  Wolfgang Karl,et al.  Architecture of Computing Systems - ARCS 2010, 23rd International Conference, Hannover, Germany, February 22-25, 2010. Proceedings , 2010, ARCS.

[15]  Hartmut Schmeck,et al.  Adaption of XCS to multi-learner predator/prey scenarios , 2010, GECCO '10.

[16]  Christian Müller-Schloer,et al.  Organic computing: on the feasibility of controlled emergence , 2004, CODES+ISSS '04.

[17]  Hartmut Schmeck,et al.  Using Organic Computing to Control Bunching Effects , 2008, ARCS.

[18]  Lei Liu,et al.  A Reference Architecture for Self-organizing Service-Oriented Computing , 2008, ARCS.

[19]  Hartmut Schmeck,et al.  Towards a generic observer/controller architecture for Organic Computing , 2006, GI Jahrestagung.

[20]  Jörg Hähner,et al.  Dynamic Control of Network Protocols - A New Vision for Future Self-organising Networks , 2009, ICINCO-ICSO.

[21]  Jörg Hähner,et al.  Investigation of Generic Observer/Controller Architectures in a Traffic Scenario , 2008, GI Jahrestagung.

[22]  Hartmut Schmeck,et al.  Organic Computing - A New Vision for Distributed Embedded Systems , 2005, ISORC.

[23]  Moez Mnif Quantitative Emergenz: eine Quantifizierungsmethodik für Ordnung in selbstorganisierenden technischen Systemen , 2010 .

[24]  Klaus Waldschmidt,et al.  Architecture of Computing Systems - ARCS 2006 , 2006, Lecture Notes in Computer Science.

[25]  Jörg Hähner,et al.  Possibilities and limitations of decentralised traffic control systems , 2010, The 2010 International Joint Conference on Neural Networks (IJCNN).

[26]  Hartmut Schmeck,et al.  Towards a quantitative notion of self-organisation , 2007, 2007 IEEE Congress on Evolutionary Computation.

[27]  Lei Liu,et al.  Enabling Self-Organising Service Level Management with Automated Negotiation , 2010, 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology.