Model of native point defect equilibrium in Cu2ZnSnS4 and application to one-zone annealing

We report a quasichemical model for point defect equilibrium in Cu2ZnSnS4 (CZTS). An ab initio calculation was used to estimate the changes in the phonon spectrum of CZTS due to trial point defects and further vibrational free energy, which in turn influences the final defect concentrations. We identify the dominant point defects and estimate the free carrier concentrations as functions of the Zn, Cu, and Sn chemical potentials, the sulfur chemical potential being set by the vapor-solid equilibrium with elemental S at the same temperature as the sample (one-zone annealing). As hinted by calculated low formation enthalpies, either the Cu vacancy (VCu−) or Cu on Zn antisite (CuZn−) acceptors are expected to dominate over a wide range of cation chemical potentials. However, the sulfur vacancy (VS2+) becomes a dominant compensating donor especially for one-zone annealing conditions. We also find that different native defects induce distinct perturbations to the vibrational free energy, resulting in non-trivia...

[1]  M. Scarpulla,et al.  Temperature dependent conductivity of polycrystalline Cu2ZnSnS4 thin films , 2012 .

[2]  O. Porat,et al.  Defect chemistry of Cu2−yO at elevated temperatures. Part II: Electrical conductivity, thermoelectric power and charged point defects , 1995 .

[3]  A. Postnikov,et al.  Electronic structure and lattice dynamics in kesterite-type Cu 2 ZnSnSe 4 from first-principles calculations , 2010 .

[4]  G. M. Ribeiro,et al.  Photoluminescence and electrical study of fluctuating potentials in Cu2ZnSnS4-based thin films , 2011 .

[5]  A. Kuwabara Theoretical investigation to thermal equilibrium concentration of point defect through first-principles calculation , 2007 .

[6]  A. Zunger New insights on chalcopyrites from solid-state theory , 2007 .

[7]  C. Persson Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4 , 2010 .

[8]  A. Pasquarello,et al.  Advanced calculations for defects in materials : electronic structure methods , 2011 .

[9]  Su-Huai Wei,et al.  Effects of Ga addition to CuInSe2 on its electronic, structural, and defect properties , 1998 .

[10]  J. Scragg Copper Zinc Tin Sulfide Thin Films for Photovoltaics: Synthesis and Characterisation by Electrochemical Methods , 2011 .

[11]  J. S. Blakemore Semiconductor Statistics , 1962 .

[12]  Thomas E. Graedel,et al.  On the Future Availability of the Energy Metals , 2011 .

[13]  Marius Grundmann,et al.  The physics of semiconductors , 2006 .

[14]  Susanne Siebentritt,et al.  The electronic structure of chalcopyrites—bands, point defects and grain boundaries , 2010 .

[15]  Soler,et al.  Self-consistent order-N density-functional calculations for very large systems. , 1996, Physical review. B, Condensed matter.

[16]  A. Zunger,et al.  Defect physics of the CuInSe 2 chalcopyrite semiconductor , 1998 .

[17]  C. Walle,et al.  First-principles calculations for defects and impurities: Applications to III-nitrides , 2004 .

[18]  R. Grill,et al.  Point defects and diffusion in cadmium telluride , 2004 .

[19]  I. Choi,et al.  Deep centers in a CuInGaSe2/CdS/ZnO:B solar cell , 2012 .

[20]  L. Girifalco Statistical physics of materials , 1973 .

[21]  A. Opanasyuk,et al.  Native point defects in ZnS films , 2009 .

[22]  Vasilis Fthenakis,et al.  Sustainability of photovoltaics: The case for thin-film solar cells , 2009 .

[23]  U. Rau,et al.  Wide-Gap Chalcopyrites , 2006 .

[24]  Alex Zunger,et al.  Light- and bias-induced metastabilities in Cu(In,Ga)Se2 based solar cells caused by the (VSe-VCu) vacancy complex , 2006 .

[25]  Tayfun Gokmen,et al.  Beyond 11% Efficiency: Characteristics of State‐of‐the‐Art Cu2ZnSn(S,Se)4 Solar Cells , 2013 .

[26]  H. Bardeleben The chemistry of structural defects in CuInSe2 , 1986 .

[27]  Supratik Guha,et al.  The path towards a high-performance solution-processed kesterite solar cell ☆ , 2011 .

[28]  T. Wada,et al.  First Principles Calculations of Defect Formation in In-Free Photovoltaic Semiconductors Cu2ZnSnS4 and Cu2ZnSnSe4 , 2011 .

[29]  T. Wada,et al.  First-principles calculation of defect formation energy in chalcopyrite-type CuInSe2, CuGaSe2 and CuAlSe2 , 2005 .

[30]  Supratik Guha,et al.  Thin film solar cell with 8.4% power conversion efficiency using an earth‐abundant Cu2ZnSnS4 absorber , 2013 .

[31]  B. Eckert,et al.  Elemental Sulfur and Sulfur-Rich Compounds I , 2003 .

[32]  T. Çagin,et al.  Characterization of vibrational and mechanical properties of quaternary compounds Cu2ZnSnS4and Cu2ZnSnSe4in kesterite and stannite structures , 2011 .

[33]  Hideaki Araki,et al.  Development of CZTS-based thin film solar cells , 2009 .

[34]  D. Hurle A thermodynamic analysis of native point defect and dopant solubilities in zinc-blende III–V semiconductors , 2010 .

[35]  Georg Kresse,et al.  Cu 2 ZnSnS 4 as a potential photovoltaic material: A hybrid Hartree-Fock density functional theory study , 2009 .

[36]  A. Opanasyuk,et al.  Point defect structure in CdTe and ZnTe thin films , 2008 .

[37]  M. A. Malik,et al.  Routes to copper zinc tin sulfide Cu2ZnSnS4 a potential material for solar cells. , 2012, Chemical communications.

[38]  Shengbai Zhang,et al.  Defect properties of CuInSe2 and CuGaSe2 , 2005 .

[39]  Mowafak Al-Jassim,et al.  Comparative study of the luminescence and intrinsic point defects in the kesterite Cu2ZnSnS4 and chalcopyrite Cu(In,Ga)Se2 thin films used in photovoltaic applications , 2011 .

[40]  I. Olekseyuk,et al.  Phase equilibria in the Cu2S–ZnS–SnS2 system , 2004 .

[41]  M. A. Berding,et al.  NATIVE DEFECTS IN CDTE , 1999 .

[42]  G. Kresse,et al.  Defect formation and phase stability of Cu 2 ZnSnS 4 photovoltaic material , 2010 .

[43]  Grain Size and Texture of Cu2ZnSnS4 Thin Films Synthesized by Cosputtering Binary Sulfides and Annealing: Effects of Processing Conditions and Sodium , 2011, 1110.1677.

[44]  Sher,et al.  First-principles calculation of native defect densities in Hg0.8Cd0.2Te. , 1994, Physical review. B, Condensed matter.

[45]  N. Nachtrieb,et al.  The chemistry of imperfect crystals , 1973 .

[46]  David C. Look,et al.  Electrical Characterization of GaAs Materials and Devices , 1989 .

[47]  Aron Walsh,et al.  Crystal and electronic band structure of Cu2ZnSnX4 (X=S and Se) photovoltaic absorbers: First-principles insights , 2009 .

[48]  A. Walsh,et al.  Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4 , 2010 .

[49]  T. Unold,et al.  Determination of secondary phases in kesterite Cu2ZnSnS4 thin films by x-ray absorption near edge structure analysis , 2011 .

[50]  A. Walsh,et al.  Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4 , 2010 .

[51]  E. Seebauer,et al.  Charged Semiconductor Defects , 2009 .