Latent force models for earth observation time series prediction

We introduce latent force models for Earth observation time series analysis. The model uses Gaussian processes and differential equations to combine data driven modelling with a physical model of the system. The LFM presented here performs multi-output structured regression, adapts to the signal characteristics, it can cope with missing data in the time series, and provides explicit latent functions that allow system analysis and evaluation. We successfully illustrate the performance in challenging scenarios of crop monitoring from space, providing time-resolved time series predictions.

[1]  Daniele Riccio,et al.  Geoscience And Remote Sensing, New Achievements , 2014 .

[2]  P. Ho Geoscience And Remote Sensing , 2014 .

[3]  J. Clevers The Derivation of a Simplified Reflectance Model for the Estimation of Leaf Area Index , 1988 .

[4]  J. Chen,et al.  Defining leaf area index for non‐flat leaves , 1992 .

[5]  Philippe Debaeke,et al.  Agronomy for Sustainable Development , 2008 .

[6]  Rasmus Fensholt,et al.  Remote Sensing , 2008, Encyclopedia of GIS.

[7]  Gustau Camps-Valls,et al.  Mapping Leaf Area Index With a Smartphone and Gaussian Processes , 2015, IEEE Geoscience and Remote Sensing Letters.

[8]  S. Durbha,et al.  Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer , 2007 .

[9]  Ian T. Nabney,et al.  Netlab: Algorithms for Pattern Recognition , 2002 .

[10]  Michael I. Jordan,et al.  Advances in Neural Information Processing Systems 30 , 1995 .

[11]  Ranga B. Myneni,et al.  Estimation of global leaf area index and absorbed par using radiative transfer models , 1997, IEEE Trans. Geosci. Remote. Sens..

[12]  J. Young,et al.  Plantæ , 1871, Transactions of the Glasgow Geological Society.

[13]  Lorenzo Busetto,et al.  Multitemporal Monitoring of Plant Area Index in the Valencia Rice District with PocketLAI , 2016, Remote. Sens..

[14]  Luis Gómez-Chova,et al.  Remote Sensing Image Processing , 2011, Remote Sensing Image Processing.

[15]  T. Carlson,et al.  On the relation between NDVI, fractional vegetation cover, and leaf area index , 1997 .

[16]  Bettina Baruth,et al.  An improved model to simulate rice yield , 2009, Agronomy for Sustainable Development.

[17]  C. Anderson,et al.  Quantitative Methods for Current Environmental Issues , 2005 .

[18]  International Conference on Artificial Intelligence and Statistics, AISTATS 2018, 9-11 April 2018, Playa Blanca, Lanzarote, Canary Islands, Spain , 2018, AISTATS.

[19]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[20]  Neil D. Lawrence,et al.  Linear Latent Force Models Using Gaussian Processes , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  R. Colwell Remote sensing of the environment , 1980, Nature.

[22]  Derek D. Lichti,et al.  ISPRS Journal of Photogrammetry and Remote Sensing theme issue “Terrestrial Laser Scanning” , 2006 .

[23]  Damien Sulla-Menashe,et al.  MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets , 2010 .

[24]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[25]  Frédéric Baret,et al.  GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: Principles of development and production , 2013 .