Dynamic Programming for Minimum Steiner Trees

We present a new dynamic programming algorithm that solves the minimum Steiner tree problem on graphs with k terminals in time O*(ck) for any c > 2. This improves the running time of the previously fastest parameterized algorithm by Dreyfus-Wagner of order O*(3k) and the so-called "full set dynamic programming" algorithm solving rectilinear instances in time O*(2.38k).