Divergent expression of Neurl3 from hemogenic endothelial cells to hematopoietic stem progenitor cells during development.

[1]  S. McKinney-Freeman,et al.  Murine fetal bone marrow does not support functional hematopoietic stem and progenitor cells until birth , 2022, Nature Communications.

[2]  Cheng Yong Tham,et al.  Independent origins of fetal liver haematopoietic stem and progenitor cells , 2022, Nature.

[3]  F. Tang,et al.  Heterogeneity in endothelial cells and widespread venous arterialization during early vascular development in mammals , 2022, Cell Research.

[4]  Zongcheng Li,et al.  Pre-configuring chromatin architecture with histone modifications guides hematopoietic stem cell formation in mouse embryos , 2022, Nature communications.

[5]  B. Liu,et al.  Single-cell architecture and functional requirement of alternative splicing during hematopoietic stem cell formation , 2022, Science advances.

[6]  M. Rattray,et al.  Murine AGM single-cell profiling identifies a continuum of hemogenic endothelium differentiation marked by ACE. , 2021, Blood.

[7]  Y. Ni,et al.  Spatiotemporal and Functional Heterogeneity of Hematopoietic Stem Cell-Competent Hemogenic Endothelial Cells in Mouse Embryos , 2021, Frontiers in Cell and Developmental Biology.

[8]  B. Göttgens,et al.  Identification of HSC/MPP expansion units in fetal liver by single-cell spatiotemporal transcriptomics , 2021, Cell Research.

[9]  Zongcheng Li,et al.  Adult-repopulating lymphoid potential of yolk sac blood vessels is not confined to arterial endothelial cells , 2021, Science China Life Sciences.

[10]  M. Z. Fadlullah,et al.  Contributions of Embryonic HSC-Independent Hematopoiesis to Organogenesis and the Adult Hematopoietic System , 2021, Frontiers in Cell and Developmental Biology.

[11]  Raphael Gottardo,et al.  Integrated analysis of multimodal single-cell data , 2020, Cell.

[12]  Qin Zhu,et al.  Developmental trajectory of pre-hematopoietic stem cell formation from endothelium. , 2020, Blood.

[13]  F. Tang,et al.  Embryonic endothelial evolution towards first hematopoietic stem cells revealed by single-cell transcriptomic and functional analyses , 2020, Cell Research.

[14]  P. Kingsley,et al.  Potently Cytotoxic Natural Killer Cells Initially Emerge from Erythro-Myeloid Progenitors during Mammalian Development. , 2020, Developmental cell.

[15]  Zongcheng Li,et al.  Tracing the first hematopoietic stem cell generation in human embryo by single-cell RNA sequencing , 2019, Cell Research.

[16]  F. Tang,et al.  Combined Single-Cell Profiling of lncRNAs and Functional Screening Reveals that H19 Is Pivotal for Embryonic Hematopoietic Stem Cell Development. , 2019, Cell stem cell.

[17]  James T. Webber,et al.  Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris , 2018, Nature.

[18]  V. Kouskoff,et al.  Single-cell transcriptomics reveal the dynamic of haematopoietic stem cell production in the aorta , 2018, Nature Communications.

[19]  I. Weissman,et al.  Single cell analysis of early progenitor cells that build coronary arteries , 2018, Nature.

[20]  L. Zon,et al.  NOTCH signaling specifies arterial-type definitive hemogenic endothelium from human pluripotent stem cells , 2018, Nature Communications.

[21]  A. Bigas,et al.  Blood Development: Hematopoietic Stem Cell Dependence and Independence. , 2018, Cell stem cell.

[22]  J. Palis Hematopoietic stem cell‐independent hematopoiesis: emergence of erythroid, megakaryocyte, and myeloid potential in the mammalian embryo , 2016, FEBS letters.

[23]  Songlin Chen,et al.  Ubiquitin ligase gene neurl3 plays a role in spermatogenesis of half-smooth tongue sole (Cynoglossus semilaevis) by regulating testis protein ubiquitination. , 2016, Gene.

[24]  N. Speck,et al.  Insights into blood cell formation from hemogenic endothelium in lesser‐known anatomic sites , 2016, Developmental dynamics : an official publication of the American Association of Anatomists.

[25]  F. Tang,et al.  Tracing haematopoietic stem cell formation at single-cell resolution , 2016, Nature.

[26]  J. Frame,et al.  Definitive Hematopoiesis in the Yolk Sac Emerges from Wnt‐Responsive Hemogenic Endothelium Independently of Circulation and Arterial Identity , 2016, Stem cells.

[27]  P. Kingsley,et al.  Distinct Sources of Hematopoietic Progenitors Emerge before HSCs and Provide Functional Blood Cells in the Mammalian Embryo. , 2015, Cell reports.

[28]  A. Eichmann,et al.  Molecular controls of arterial morphogenesis. , 2015, Circulation research.

[29]  R. Sandberg,et al.  Lymphomyeloid contribution of an immune-restricted progenitor emerging prior to definitive hematopoietic stem cells. , 2013, Cell stem cell.

[30]  Lingling Zhu,et al.  Mouse embryonic head as a site for hematopoietic stem cell development. , 2012, Cell stem cell.

[31]  M. Kaplan,et al.  Autonomous murine T-cell progenitor production in the extra-embryonic yolk sac before HSC emergence. , 2012, Blood.

[32]  Guangchuang Yu,et al.  clusterProfiler: an R package for comparing biological themes among gene clusters. , 2012, Omics : a journal of integrative biology.

[33]  Richard A. Anderson,et al.  Highly potent human hematopoietic stem cells first emerge in the intraembryonic aorta-gonad-mesonephros region , 2011, The Lancet.

[34]  J. Frampton,et al.  Hierarchical organization and early hematopoietic specification of the developing HSC lineage in the AGM region , 2011, The Journal of experimental medicine.

[35]  M. Yoder,et al.  Embryonic day 9 yolk sac and intra-embryonic hemogenic endothelium independently generate a B-1 and marginal zone progenitor lacking B-2 potential , 2011, Proceedings of the National Academy of Sciences.

[36]  I. Weissman,et al.  Expression of AA4.1 marks lymphohematopoietic progenitors in early mouse development , 2009, Proceedings of the National Academy of Sciences.

[37]  M. Yoder,et al.  Overcoming obstacles in the search for the site of hematopoietic stem cell emergence. , 2008, Cell stem cell.

[38]  D. Demello,et al.  A novel inflammation-induced ubiquitin E3 ligase in alveolar type II cells. , 2005, Biochemical and biophysical research communications.

[39]  R. Carsetti,et al.  Peripheral development of B cells in mouse and man , 2004, Immunological reviews.

[40]  N. Speck,et al.  Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo , 2000, The EMBO journal.

[41]  J. Palis,et al.  Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. , 1999, Development.

[42]  A. Medvinsky,et al.  Definitive Hematopoiesis Is Autonomously Initiated by the AGM Region , 1996, Cell.

[43]  A. Cumano,et al.  Differentiation and characterization of B-cell precursors detected in the yolk sac and embryo body of embryos beginning at the 10- to 12-somite stage. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[44]  R. Auerbach,et al.  In vitro development of murine T cells from prethymic and preliver embryonic yolk sac hematopoietic stem cells. , 1991, Development.

[45]  H. Herschman,et al.  Targeted identification of glucocorticoid-attenuated response genes: in vitro and in vivo models. , 2004, Proceedings of the American Thoracic Society.

[46]  R. Auerbach,et al.  In vitro differentiation of B cells and myeloid cells from the early mouse embryo and its extraembryonic yolk sac. , 1994, Experimental hematology.