Multifractal products of stochastic processes: construction and some basic properties

In various fields, such as teletraffic and economics, measured time series have been reported to adhere to multifractal scaling. Classical cascading measures possess multifractal scaling, but their increments form a nonstationary process. To overcome this problem, we introduce a construction of random multifractal measures based on iterative multiplication of stationary stochastic processes, a special form of T-martingales. We study the ℒ2-convergence, nondegeneracy, and continuity of the limit process. Establishing a power law for its moments, we obtain a formula for the multifractal spectrum and hint at how to prove the full formalism.

[1]  B. Mandelbrot Possible refinement of the lognormal hypothesis concerning the distribution of energy dissipation in intermittent turbulence , 1972 .

[2]  J. Kahane,et al.  Sur certaines martingales de Benoit Mandelbrot , 1976 .

[3]  J. Peyrière,et al.  Calculs de dimensions de Hausdorff , 1977 .

[4]  J. Kahane Sur le chaos multiplicatif , 1985 .

[5]  Analysis at Urbana: Random multiplications, random coverings, and multiplicative chaos , 1989 .

[6]  V. Gupta,et al.  Multiscaling properties of spatial rain-fall and river flow distributions , 1990 .

[7]  M. Arbeiter,et al.  Random recursive construction of self-similar fractal measures. The noncompact case , 1991 .

[8]  David Williams,et al.  Probability with Martingales , 1991, Cambridge mathematical textbooks.

[9]  Edward C. Waymire,et al.  Multifractal Dimensions and Scaling Exponents for Strongly Bounded Random Cascades , 1992 .

[10]  Kenneth Falconer,et al.  The multifractal spectrum of statistically self-similar measures , 1994 .

[11]  E. Waymire,et al.  A CASCADE DECOMPOSITION THEORY WITH APPLICATIONS TO MARKOV AND EXCHANGEABLE CASCADES , 1996 .

[12]  Stéphane Jaffard,et al.  Sur la nature multifractale des processus de Lévy , 1996 .

[13]  G. M. Molchan,et al.  Scaling exponents and multifractal dimensions for independent random cascades , 1996 .

[14]  J. L. Véhel,et al.  Fractional Brownian motion and data traffic modeling: The other end of the spectrum , 1997 .

[15]  Rudolf H. RiediRice Tcp Traac Is Multifractal: a Numerical Study , 1997 .

[16]  N. Patzschke,et al.  Self-Conformal Multifractal Measures , 1997 .

[17]  Anja Feldmann,et al.  Data networks as cascades: investigating the multifractal nature of Internet WAN traffic , 1998, SIGCOMM '98.

[18]  Richard G. Baraniuk,et al.  A Multifractal Wavelet Model with Application to Network Traffic , 1999, IEEE Trans. Inf. Theory.

[19]  Julien Barral Moments, continuité, et analyse multifractale des martingales de Mandelbrot , 1999 .

[20]  B. Mandelbrot,et al.  Easy and Natural Generation of Multifractals: Multiplying Harmonics of Periodic Functions , 1999 .

[21]  S. Jaffard The multifractal nature of Lévy processes , 1999 .

[22]  J. Kahane Random Coverings and Multiplicative Processes , 2000 .

[23]  Multifractal spectra of certain random Gibbs measures , 2000 .

[24]  E. Waymire,et al.  Independent random cascades on Galton-Watson trees , 2000 .

[25]  Mandelbrot Cascade Measures Independent of Branching Parameter , 2002 .

[26]  B. Mandelbrot Intermittent turbulence in self-similar cascades : divergence of high moments and dimension of the carrier , 2004 .