Parameter estimation of analog circuits based on the fractional wavelet method

Aiming at the problem of parameter estimation in analog circuits, a new approach is proposed. The approach is based on the fractional wavelet to derive the Volterra series model of the circuit under test (CUT). By the gradient search algorithm used in the Volterra model, the unknown parameters in the CUT are estimated and the Volterra model is identified. The simulations show that the parameter estimation results of the proposed method in the paper are better than those of other parameter estimation methods.

[1]  Ma Chengyan,et al.  A novel analog/digital reconfigurable automatic gain control with a novel DC offset cancellation circuit , 2011 .

[2]  R. Pagano Characterization, parameter identification, and modeling of a new monolithic emitter-switching bipolar transistor , 2006, IEEE Transactions on Electron Devices.

[3]  Gérard Favier,et al.  Identification of Parallel-Cascade Wiener Systems Using Joint Diagonalization of Third-Order Volterra Kernel Slices , 2009, IEEE Signal Processing Letters.

[4]  Trevor Burton,et al.  Nonlinear System Identification Using a Subband Adaptive Volterra Filter , 2008, 2008 IEEE Instrumentation and Measurement Technology Conference.

[5]  José Luis Huertas,et al.  Analog and mixed-signal benchmark circuits-first release , 1997, Proceedings International Test Conference 1997.

[6]  Shi Yibing,et al.  Diagnosis of soft faults in analog integrated circuits based on fractional correlation , 2012 .

[7]  Jing Yang,et al.  Complex Field Fault Modeling-Based Optimal Frequency Selection in Linear Analog Circuit Fault Diagnosis , 2014, IEEE Transactions on Instrumentation and Measurement.

[8]  Bruno Apolloni,et al.  Statistical Parameter Identification of Analog Integrated Circuit Reverse Models , 2009, ICANN.

[9]  Demetrios G. Lainiotis,et al.  A partitioned adaptive approach to nonlinear channel equalization , 1998, IEEE Trans. Commun..

[10]  W. Martin Snelgrove,et al.  Adaptive linearization of a loudspeaker , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[11]  Israel Cohen,et al.  Modeling and Identification of Nonlinear Systems in the Short-Time Fourier Transform Domain , 2010, IEEE Transactions on Signal Processing.

[12]  Charles E. Stroud,et al.  Benchmark circuits for analog and mixed-signal testing , 1999, Proceedings IEEE Southeastcon'99. Technology on the Brink of 2000 (Cat. No.99CH36300).

[13]  Luís B. Almeida,et al.  The fractional Fourier transform and time-frequency representations , 1994, IEEE Trans. Signal Process..

[14]  Wei-Ping Zhu,et al.  Compensation of Loudspeaker Nonlinearity in Acoustic Echo Cancellation Using Raised-Cosine Function , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[15]  Harish Parthasarathy,et al.  Wavelet-Based Transistor Parameter Estimation , 2010, Circuits Syst. Signal Process..

[16]  David Rees,et al.  Probing signals for measuring nonlinear Volterra kernels , 1995, Proceedings of 1995 IEEE Instrumentation and Measurement Technology Conference - IMTC '95.

[17]  Tang Jing,et al.  Optimization of Analog Circuit Fault Diagnosis Parameters based on SVM and Genetic Algorithm , 2012 .

[18]  Bruce W. Suter,et al.  The Fractional Wave Packet Transform , 1998, Multidimens. Syst. Signal Process..

[19]  Nicholas Kalouptsidis,et al.  Nonlinear system identification using Gaussian inputs , 1995, IEEE Trans. Signal Process..

[20]  Mu Li,et al.  Fault Diagnosis of Analog Circuit Based on Wavelet Neural Networks and Chaos Differential Evolution Algorithm , 2010, 2010 International Conference on Electrical and Control Engineering.

[21]  Wang Yu,et al.  Soft error generation analysis in combinational logic circuits , 2010 .

[22]  Michele Pace,et al.  Global parameter estimation of an Hodgkin-Huxley formalism using membrane voltage recordings: Application to neuro-mimetic analog integrated circuits , 2012, Neurocomputing.