Shifts in Coding Properties and Maintenance of Information Transmission during Adaptation in Barrel Cortex

Neuronal responses to ongoing stimulation in many systems change over time, or “adapt.” Despite the ubiquity of adaptation, its effects on the stimulus information carried by neurons are often unknown. Here we examine how adaptation affects sensory coding in barrel cortex. We used spike-triggered covariance analysis of single-neuron responses to continuous, rapidly varying vibrissa motion stimuli, recorded in anesthetized rats. Changes in stimulus statistics induced spike rate adaptation over hundreds of milliseconds. Vibrissa motion encoding changed with adaptation as follows. In every neuron that showed rate adaptation, the input–output tuning function scaled with the changes in stimulus distribution, allowing the neurons to maintain the quantity of information conveyed about stimulus features. A single neuron that did not show rate adaptation also lacked input–output rescaling and did not maintain information across changes in stimulus statistics. Therefore, in barrel cortex, rate adaptation occurs on a slow timescale relative to the features driving spikes and is associated with gain rescaling matched to the stimulus distribution. Our results suggest that adaptation enhances tactile representations in primary somatosensory cortex, where they could directly influence perceptual decisions.

[1]  E. Adrian,et al.  The impulses produced by sensory nerve endings , 1926, The Journal of physiology.

[2]  F. Attneave Some informational aspects of visual perception. , 1954, Psychological review.

[3]  P Kuyper,et al.  Triggered correlation. , 1968, IEEE transactions on bio-medical engineering.

[4]  A. B. Bonds,et al.  Gain Control in the Retina and Retinal Dynamics , 1972, Nature.

[5]  H. L. Bryant,et al.  Spike initiation by transmembrane current: a white‐noise analysis. , 1976, The Journal of physiology.

[6]  R. Shapley,et al.  The effect of contrast on the transfer properties of cat retinal ganglion cells. , 1978, The Journal of physiology.

[7]  D. Simons Response properties of vibrissa units in rat SI somatosensory neocortex. , 1978, Journal of neurophysiology.

[8]  R. Shapley,et al.  Nonlinear spatial summation and the contrast gain control of cat retinal ganglion cells. , 1979, The Journal of physiology.

[9]  S. Laughlin A Simple Coding Procedure Enhances a Neuron's Information Capacity , 1981, Zeitschrift fur Naturforschung. Section C, Biosciences.

[10]  William Bialek,et al.  Real-time performance of a movement-sensitive neuron in the blowfly visual system: coding and information transfer in short spike sequences , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[11]  D. Simons,et al.  Thalamocortical response transformation in the rat vibrissa/barrel system. , 1989, Journal of neurophysiology.

[12]  E. Welker,et al.  The Mode of Activation of a Barrel Column: Response Properties of Single Units in the Somatosensory Cortex of the Mouse upon Whisker Deflection , 1993, The European journal of neuroscience.

[13]  Stefano Panzeri,et al.  Analytical estimates of limited sampling biases in different information measures. , 1996, Network.

[14]  William Bialek,et al.  Entropy and Information in Neural Spike Trains , 1996, cond-mat/9603127.

[15]  Stefano Panzeri,et al.  How Well Can We Estimate the Information Carried in Neuronal Responses from Limited Samples? , 1997, Neural Computation.

[16]  Michael J. Berry,et al.  Adaptation of retinal processing to image contrast and spatial scale , 1997, Nature.

[17]  Michael E. Rudd,et al.  Noise Adaptation in Integrate-and-Fire Neurons , 1997, Neural Computation.

[18]  Martin J. Wainwright,et al.  Visual adaptation as optimal information transmission , 1999, Vision Research.

[19]  M. Diamond,et al.  Examination of the spatial and temporal distribution of sensory cortical activity using a 100-electrode array , 1999, Journal of Neuroscience Methods.

[20]  William Bialek,et al.  Adaptive Rescaling Maximizes Information Transmission , 2000, Neuron.

[21]  D. Simons,et al.  Circuit dynamics and coding strategies in rodent somatosensory cortex. , 2000, Journal of neurophysiology.

[22]  M. Diamond,et al.  Spatial–Temporal Distribution of Whisker-Evoked Activity in Rat Somatosensory Cortex and the Coding of Stimulus Location , 2000, The Journal of Neuroscience.

[23]  R. Romo,et al.  Neuronal correlates of sensory discrimination in the somatosensory cortex. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Adrienne L. Fairhall,et al.  Efficiency and ambiguity in an adaptive neural code , 2001, Nature.

[25]  E Ahissar,et al.  Temporal frequency of whisker movement. II. Laminar organization of cortical representations. , 2001, Journal of neurophysiology.

[26]  Eero P. Simoncelli,et al.  Characterizing Neural Gain Control using Spike-triggered Covariance , 2001, NIPS.

[27]  S. Nelson,et al.  Short-Term Depression at Thalamocortical Synapses Contributes to Rapid Adaptation of Cortical Sensory Responses In Vivo , 2002, Neuron.

[28]  M. Castro-Alamancos,et al.  Cortical sensory suppression during arousal is due to the activity‐dependent depression of thalamocortical synapses , 2002, The Journal of physiology.

[29]  M. Diamond,et al.  Somatosensory cortical neuronal population activity across states of anaesthesia , 2002, The European journal of neuroscience.

[30]  M. Meister,et al.  Fast and Slow Contrast Adaptation in Retinal Circuitry , 2002, Neuron.

[31]  William Bialek,et al.  Adaptive spike coding , 2002 .

[32]  Randy M Bruno,et al.  Feedforward Mechanisms of Excitatory and Inhibitory Cortical Receptive Fields , 2002, The Journal of Neuroscience.

[33]  J. Touryan,et al.  Isolation of Relevant Visual Features from Random Stimuli for Cortical Complex Cells , 2002, The Journal of Neuroscience.

[34]  A. Grinvald,et al.  Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[35]  E. Ahissar,et al.  Encoding of Vibrissal Active Touch , 2003, Neuron.

[36]  Liam Paninski,et al.  Noise-driven adaptation: in vitro and mathematical analysis , 2003, Neurocomputing.

[37]  M. Diamond,et al.  Encoding of Whisker Vibration by Rat Barrel Cortex Neurons: Implications for Texture Discrimination , 2003, The Journal of Neuroscience.

[38]  Adrienne L. Fairhall,et al.  Computation in a Single Neuron: Hodgkin and Huxley Revisited , 2002, Neural Computation.

[39]  Anders Dale,et al.  Band-pass response properties of rat SI neurons. , 2003, Journal of neurophysiology.

[40]  Shy Shoham,et al.  Robust, automatic spike sorting using mixtures of multivariate t-distributions , 2003, Journal of Neuroscience Methods.

[41]  William Bialek,et al.  The Information Content of Receptive Fields , 2003, Neuron.

[42]  Adrienne L. Fairhall,et al.  What Causes a Neuron to Spike? , 2003, Neural Computation.

[43]  M. Castro-Alamancos,et al.  Absence of Rapid Sensory Adaptation in Neocortex during Information Processing States , 2004, Neuron.

[44]  M. Diamond,et al.  Rapid Fluctuations in Rat Barrel Cortex Plasticity , 2004, The Journal of Neuroscience.

[45]  D J Simons,et al.  Adaptation in thalamic barreloid and cortical barrel neurons to periodic whisker deflections varying in frequency and velocity. , 2004, Journal of neurophysiology.

[46]  C. Schreiner,et al.  Short-term adaptation of auditory receptive fields to dynamic stimuli. , 2004, Journal of neurophysiology.

[47]  Eero P. Simoncelli,et al.  To appear in: The New Cognitive Neurosciences, 3rd edition Editor: M. Gazzaniga. MIT Press, 2004. Characterization of Neural Responses with Stochastic Stimuli , 2022 .

[48]  Garrett B Stanley,et al.  Nonlinear encoding of tactile patterns in the barrel cortex. , 2004, Journal of neurophysiology.

[49]  M. Weliky,et al.  Small modulation of ongoing cortical dynamics by sensory input during natural vision , 2004, Nature.

[50]  R. Romo,et al.  Neural codes for perceptual discrimination in primary somatosensory cortex , 2005, Nature Neuroscience.

[51]  W. Bialek,et al.  Features and dimensions: Motion estimation in fly vision , 2005, q-bio/0505003.

[52]  M. Diamond,et al.  Neuronal Encoding of Texture in the Whisker Sensory Pathway , 2005, PLoS biology.

[53]  M. Meister,et al.  Dynamic predictive coding by the retina , 2005, Nature.

[54]  J. Touryan,et al.  Spatial Structure of Complex Cell Receptive Fields Measured with Natural Images , 2005, Neuron.

[55]  Jadin C. Jackson,et al.  Quantitative measures of cluster quality for use in extracellular recordings , 2005, Neuroscience.

[56]  H. Sompolinsky,et al.  Adaptation without parameter change: Dynamic gain control in motion detection , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Eero P. Simoncelli,et al.  Spatiotemporal Elements of Macaque V1 Receptive Fields , 2005, Neuron.

[58]  Adrienne L Fairhall,et al.  Two-Dimensional Time Coding in the Auditory Brainstem , 2005, The Journal of Neuroscience.

[59]  I. Dean,et al.  Neural population coding of sound level adapts to stimulus statistics , 2005, Nature Neuroscience.

[60]  Tai Sing Lee,et al.  The role of spiking nonlinearity in contrast gain control and information transmission , 2005, Vision Research.

[61]  T. Albright,et al.  Blue-yellow signals are enhanced by spatiotemporal luminance contrast in macaque V1. , 2005, Journal of neurophysiology.

[62]  Katherine I. Nagel,et al.  Temporal Processing and Adaptation in the Songbird Auditory Forebrain , 2006, Neuron.

[63]  David Kleinfeld,et al.  Active sensation: insights from the rodent vibrissa sensorimotor system , 2006, Current Opinion in Neurobiology.

[64]  M. Diamond,et al.  Deciphering the Spike Train of a Sensory Neuron: Counts and Temporal Patterns in the Rat Whisker Pathway , 2006, The Journal of Neuroscience.

[65]  Kenneth D. Miller,et al.  Adaptive filtering enhances information transmission in visual cortex , 2006, Nature.

[66]  Christoph Kayser,et al.  Texture signals in whisker vibrations. , 2006, Journal of neurophysiology.

[67]  Michael J. Berry,et al.  Selectivity for multiple stimulus features in retinal ganglion cells. , 2006, Journal of neurophysiology.

[68]  E. Ahissar,et al.  Parallel Thalamic Pathways for Whisking and Touch Signals in the Rat , 2006, PLoS biology.

[69]  Garrett B Stanley,et al.  Transient and steady-state dynamics of cortical adaptation. , 2006, Journal of neurophysiology.

[70]  N. Wittenburg,et al.  Transformation from temporal to rate coding in a somatosensory thalamocortical pathway , 2022 .