Class-Dependent Feature Selection for Face Recognition

Feature extraction and feature selection are very important steps for face recognition. In this paper, we propose to use a class-dependent feature selection method to select different feature subsets for different classes after using principal component analysis to extract important information from face images. We then use the support vector machine (SVM) for classification. The experimental result shows that class-dependent feature selection can produce better classification accuracy with fewer features, compared with using the class-independent feature selection method.

[1]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[2]  G. Sandini,et al.  Computer Vision — ECCV'92 , 1992, Lecture Notes in Computer Science.

[3]  Lipo Wang,et al.  Data Mining With Computational Intelligence , 2006, IEEE Transactions on Neural Networks.

[4]  Chengjun Liu,et al.  Independent component analysis of Gabor features for face recognition , 2003, IEEE Trans. Neural Networks.

[5]  Witold Pedrycz,et al.  Face recognition: A study in information fusion using fuzzy integral , 2005, Pattern Recognit. Lett..

[6]  Ching Y. Suen,et al.  Analysis of Class Separation and Combination of Class-Dependent Features for Handwriting Recognition , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Haitao Zhao,et al.  A novel incremental principal component analysis and its application for face recognition , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[8]  Andrew R. Webb,et al.  Statistical Pattern Recognition , 1999 .

[9]  Guangyou Xu,et al.  Video Based Face Recognition By Support Vector Machines , 2002, JCIS.

[10]  Michael G. Strintzis,et al.  Face Recognition , 2008, Encyclopedia of Multimedia.

[11]  K. Kim,et al.  Face recognition using kernel principal component analysis , 2002, IEEE Signal Process. Lett..

[12]  Xuelong Li,et al.  General Tensor Discriminant Analysis and Gabor Features for Gait Recognition , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Paul M. Baggenstoss,et al.  Class-specific feature sets in classification , 1998, Proceedings of the 1998 IEEE International Symposium on Intelligent Control (ISIC) held jointly with IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA) Intell.

[14]  L. D. Harmon,et al.  Identification of human faces , 1971 .

[15]  Kwang In Kim,et al.  Face recognition using kernel principal component analysis , 2002, IEEE Signal Processing Letters.

[16]  Chengjun Liu,et al.  Gabor-based kernel PCA with fractional power polynomial models for face recognition , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Norbert Krüger,et al.  Face Recognition by Elastic Bunch Graph Matching , 1997, CAIP.

[18]  Vytautas Perlibakas,et al.  Distance measures for PCA-based face recognition , 2004, Pattern Recognit. Lett..

[19]  Wang Zhan A Face Recognition Classifier Based on the RBPNN Model , 2006 .

[20]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[21]  Konstantinos N. Plataniotis,et al.  Face recognition using LDA-based algorithms , 2003, IEEE Trans. Neural Networks.

[22]  Guangyou Xu,et al.  Training support vector machines for video-based face recognition , 2002, Other Conferences.

[23]  LuHanqing,et al.  A NON-PARAMETER BAYESIAN CLASSIFIER FOR FACE RECOGNITION , 2003 .

[24]  Chih-Jen Lin,et al.  A comparison of methods for multiclass support vector machines , 2002, IEEE Trans. Neural Networks.

[25]  Feng Chu,et al.  A General Wrapper Approach to Selection of Class-Dependent Features , 2008, IEEE Transactions on Neural Networks.

[26]  Xu Xiao-ming Face Recognition Based on Support Vector Machines , 2009 .

[27]  L Sirovich,et al.  Low-dimensional procedure for the characterization of human faces. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[28]  Keinosuke Fukunaga,et al.  Statistical Pattern Recognition , 1993, Handbook of Pattern Recognition and Computer Vision.

[29]  Lipo Wang,et al.  A Novel Support Vector Machine with Class-dependent Features for Biomedical Data , 2006, 2006 IEEE International Conference on Systems, Man and Cybernetics.

[30]  Ian Craw,et al.  Finding Face Features , 1992, ECCV.

[31]  Lipo Wang,et al.  Data dimensionality reduction with application to simplifying RBF network structure and improving classification performance , 2003, IEEE Trans. Syst. Man Cybern. Part B.