Mastering by the teacher of the instrumental genesis in CAS environments: necessity of intrumental orchestrations

In this article, we study didactic phenomena identified in integration experiments within our classes, CAS (implemented in calculators). From this study, we show the interest of an instrumental approach to understand the influence of tools on the mathematical approach and on the building of student's knowledge: through a process—instrumental genesis—a calculator becomes a mathematical work tool; this process depends on the tool's constraints and potentialities, on students' knowledge, and on the class' work situations. To analyze the differentiation of instrumental genesis, we then have taken interest in students' behaviour and we propose a method enabling us to constitute a typology of extreme behaviour in environments of symbolic calculators. To take the variety of these genesis into account, the professor needs a particular organization of space and time of the study in the class. We suggest the notion of instrumental orchestration to name this organization. We demonstrate how this notion gives a better definition of the objectives, the configurations and the exploitation modes of different arrangements which aim at constituting coherent instrument systems for each student and for the class.

[1]  Kaye Stacey,et al.  Teachers in transition: Moving towards CAS-supported classrooms , 2002 .

[2]  Pierre Vérillon,et al.  Cognition and artifacts: A contribution to the study of though in relation to instrumented activity , 1995 .

[3]  P. Drijvers Learning mathematics in a computer algebra environment: obstacles are opportunities , 2002 .

[4]  Paul Drijvers,et al.  Students encountering obstacles using a CAS , 2000, Int. J. Comput. Math. Learn..

[5]  Kenneth Ruthven,et al.  The Calculator as a Cognitive Tool: Upper-Primary Pupils Tackling a Realistic Number Problem , 1997, Int. J. Comput. Math. Learn..

[6]  Jean-Baptiste Lagrange,et al.  L'intégration d'instruments informatiques dans l'enseignement: Une approche par les techniques , 2000 .

[7]  R. Duval,et al.  Quel cognitif retenir en didactique des mathématiques , 1996 .

[8]  Margaret Kendall,et al.  The Impact of Teacher Privileging on Learning Differentiation with Technology , 2001, Int. J. Comput. Math. Learn..

[9]  Colette Laborde A META STUDY ON IC TECHNOLOGIES IN EDUCATION. Towards a multidimensional framework to tackle their integration Jean-baptiste Lagrange, IUFM de Bretagne (Rennes, France) , 2001 .

[10]  Luc Trouche,et al.  The Complex Process of Converting Tools into Mathematical Instruments: The Case of Calculators , 1998, Int. J. Comput. Math. Learn..

[11]  Dominique Guin,et al.  Calculatrices symboliques. Transformer un outil en un instrument du travail mathématique : un problème didactique , 2002 .

[12]  Aline Robert,et al.  Prise en compte du méta en didactique des mathématiques , 1996 .

[13]  Edith Schneider Teacher Experiences with the Use of a CAS in a Mathematics Classroom. , 2000 .

[14]  J. Portugais Brousseau, G. (1998). Théorie des situations didactiques (Textes rassemblés et préparés par Nicolas Balacheff, Martin Cooper, Rosamund Sutherland, Virginia Warfield). Grenoble: La pensée sauvage. , 2000 .

[15]  Michèle Artigue,et al.  Learning Mathematics in a CAS Environment: The Genesis of a Reflection about Instrumentation and the Dialectics between Technical and Conceptual Work , 2002, Int. J. Comput. Math. Learn..

[16]  Luc Trouche,et al.  La parabole du gaucher et de la casserole à bec verseur: ètude des processus d'apprentissage dans un environnement de calculatrices symboliques , 2000 .

[17]  Rosa Maria Bottino,et al.  The emerging of teachers' conceptions of new subjects inserted in mathematics programs: the case of informatics , 1996 .

[18]  W. Dörfler Computer Use and Views of the Mind , 1993 .

[19]  Michèle Artigue,et al.  Le Logiciel ‘Derive’ comme revelateur de phenomenes didactiques lies a l'utilisation d'environnements informatiques pour l'apprentissage , 1997 .

[20]  N. Balacheff,et al.  Didactique et intelligence artificielle , 1994 .

[21]  Michal Yerushalmy Reaching the Unreachable: Technology and the Semantics of Asymptotes , 1997, Int. J. Comput. Math. Learn..

[22]  Tommy Dreyfus Didactic Design of Computer-based Learning Environments , 1993 .

[23]  Marina Penglase,et al.  The graphics calculator in mathematics education: A critical review of recent research , 1996 .

[24]  Celia Hoyles,et al.  Windows on Mathematical Meanings , 1996 .