Influence of composite LiCl–KCl molten salt on microstructure and electrochemical performance of spinel Li4Ti5O12

Abstract A series of spinel Li4Ti5O12 samples were synthesized via a composite molten-salt method (CMSM) using the mixtures of LiCl and KCl with different L values (L is defined as the molar ratio of LiCl:KCl) as the reaction media. It is found that the melting point of the composite molten salt can effectively influence the formation of particles, and leads to different electrochemical performances of the as-prepare Li4Ti5O12. The investigations of X-ray diffraction (XRD), particle size distribution (PSD), Brunauer–Emmet–Teller (BET) surface area, and scanning electron microscopy (SEM) indicate that the as-prepared Li4Ti5O12 with L = 1.5 is a pure phase, and has uniform homogeneous octahedral shape particles, rather narrow PSD, and high BET surface area. Electrochemical tests show that the optimized Li4Ti5O12 with L = 1.5 has an initial discharge capacity of 169 mAh g−1 and an initial charge–discharge efficiency of 94% at 0.2 C rate, and achieves good rate performances from 0.2 C to 5 C.

[1]  Heon-Cheol Shin,et al.  Lithium transport through Li1+δ[Ti2−yLiy]O4 (y=0; 1/3) electrodes by analysing current transients upon large potential steps , 1999 .

[2]  K. Watari,et al.  Molten salt synthesis of 0.94(Na1 / 2Bi1 / 2)TiO3–0.06BaTiO3 powder , 2005 .

[3]  Tao Zheng,et al.  An Asymmetric Hybrid Nonaqueous Energy Storage Cell , 2001 .

[4]  Tsutomu Ohzuku,et al.  Zero‐Strain Insertion Material of Li [ Li1 / 3Ti5 / 3 ] O 4 for Rechargeable Lithium Cells , 1995 .

[5]  D. H. Bradhurst,et al.  Spinel Li[Li1/3Ti5/3]O4 as an anode material for lithium ion batteries , 1999 .

[6]  Karim Zaghib,et al.  Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries , 1999 .

[7]  Yongyao Xia,et al.  Nanosized Li4Ti5O12 Prepared by Molten Salt Method as an Electrode Material for Hybrid Electrochemical Supercapacitors , 2006 .

[8]  Anders Lundblad,et al.  Synthesis of LiCoO2 starting from carbonate precursors I. The reaction mechanisms , 1997 .

[9]  R. H. Arendt The molten salt synthesis of single magnetic domain BaFe12O19 and SrFe12O19 crystals , 1973 .

[10]  M. Gorova,et al.  Lithium−Cobalt Citrate Precursors in the Preparation of Intercalation Electrode Materials , 1996 .

[11]  Alexis Laforgue,et al.  A Nonaqueous Asymmetric Hybrid Li4Ti5 O 12 / Poly(fluorophenylthiophene) Energy Storage Device , 2002 .

[12]  Yang‐Kook Sun,et al.  Molten salt synthesis of LiNi0.5Mn1.5O4 spinel for 5 V class cathode material of Li-ion secondary battery , 2004 .

[13]  K. Zaghib,et al.  Nano-particle Li4Ti5O12 spinel as electrode for electrochemical generators , 2003 .

[14]  Shinji Inazawa,et al.  Development of long life lithium ion battery for power storage , 2001 .

[15]  Kuang‐Che Hsiao,et al.  Microstructure effect on the electrochemical property of Li4Ti5O12 as an anode material for lithium-ion batteries , 2008 .

[16]  Sang-Cheol Han,et al.  Nickel sulfide synthesized by ball milling as an attractive cathode material for rechargeable lithium batteries , 2003 .

[17]  Zongping Shao,et al.  Influence of high-energy ball milling of precursor on the morphology and electrochemical performance of Li4Ti5O12–ball-milling time , 2008 .

[18]  T. Matsushima,et al.  Preparation of particulate Li4Ti5O12 having excellent characteristics as an electrode active material for power storage cells , 2003 .

[19]  L. Wen,et al.  Molten salt synthesis of spherical LiNi0.5Mn1.5O4 cathode materials , 2006 .

[20]  Liquan Chen,et al.  Spectroscopic studies on cation-doped spinel LiMn2O4 for lithium ion batteries , 2001 .

[21]  G. Wegner,et al.  Synthesis of Submicrometer‐Sized Electrochemically Active Lithium Cobalt Oxide via a Polymer Precursor , 2005 .

[22]  K. Zaghib,et al.  Electrochemistry and local structure of nano-sized Li4/3Me5/3O4 (MeMn, Ti) spinels , 2004 .

[23]  Deyu Li,et al.  Study on the effect of Li doping in spinel Li4+xTi5−xO12 (0 ⩽ x ⩽ 0.2) materials for lithium-ion batteries , 2008 .

[24]  Jeff Dahn,et al.  Structure and electrochemistry of the spinel oxides LiTi2O4 and Li43Ti53O4 , 1989 .

[25]  J. Dahn,et al.  Synthesis and Characterization of Li1 + x Mn2 − x O 4 for Li‐Ion Battery Applications , 1996 .

[26]  C. Geantet,et al.  Synthesis of solid materials in molten nitrates , 1998 .

[27]  Paul A. Nelson,et al.  Development of a high-power lithium-ion battery , 1998 .