Layer-sliding-mediated reversible tuning of interfacial electronic and optical properties of intercalated ZrO2/MoS2 van der Waals heterostructure

Effective techniques capable of tuning the properties of van der Waals (vdW) layered materials in a controllable as well as reversible manner are elusive. To demonstrate our proposed technique, an advantageous two-dimensional heterostructure (HS) is modeled using ZrO2 and MoS2 layers. Afterwards, variation of structural, electronic, interfacial and optical properties is performed by sliding one layer of the intercalated ZrO2/MoS2 vdW-HS over another. Electronic band structure calculations show a transition from metallic to semiconducting character upon Li intercalation. As the layer-sliding proceeds, mixing of bands across the Fermi level occurs and is intensified resulting in a metallic character vdW-HS obtained at the completion of the sliding pathway. It is found that Li-intercalation greatly upturns the charge transfer towards 2H–ZrO2 layer as compared to the unintercalated vdW-HS. Dielectric function is profoundly affected by Li-intercalation, and the maximum absorption region and polarization is reduced by 31 and 28%, respectively.

[1]  Mubashar Ali,et al.  Efficient hydrogen storage in LiMgF3: A first principle study , 2023, International Journal of Hydrogen Energy.

[2]  Yanping Liu,et al.  Ta3N5/CdS Core–Shell S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Removal of Antibiotic Tetracycline and Cr(VI): Performance and Mechanism Insights , 2023, Advanced Fiber Materials.

[3]  Yanping Liu,et al.  A novel organic/inorganic S-scheme heterostructure of TCPP/Bi12O17Cl2 for boosting photodegradation of tetracycline hydrochloride: Kinetic, degradation mechanism, and toxic assessment , 2023, Applied Surface Science.

[4]  Y. Ang,et al.  Cataloguing MoSi 2 N 4 and WSi 2 N 4 van der Waals Heterostructures: An Exceptional Material Platform for Excitonic Solar Cell Applications (Adv. Mater. Interfaces 2/2023) , 2023, Advanced Materials Interfaces.

[5]  Wei Zhao,et al.  S-Scheme MIL-101(Fe) octahedrons modified Bi2WO6 microspheres for photocatalytic decontamination of Cr(VI) and tetracycline hydrochloride: Synergistic insights, reaction pathways, and toxicity analysis , 2022, Chemical Engineering Journal.

[6]  Yanping Liu,et al.  Novel Cd0.5Zn0.5S/Bi2MoO6 S-scheme heterojunction for boosting the photodegradation of antibiotic enrofloxacin: Degradation pathway, mechanism and toxicity assessment , 2022, Separation and Purification Technology.

[7]  Zenghui Wang,et al.  Recent progress in 2D van der Waals heterostructures: fabrication, properties, and applications , 2022, Science China Information Sciences.

[8]  Deobrat Singh,et al.  Optoelectronic properties of 2D van der Waals heterostructure As/PtS2 by first-principles calculations , 2022, Materials Today: Proceedings.

[9]  Y. Ang,et al.  Cataloguing MoSi2N4 and WSi2N4 van der Waals Heterostructures: An Exceptional Material Platform for Excitonic Solar Cell Applications , 2022, Advanced Materials Interfaces.

[10]  Xiaobo Chen,et al.  Constructing Cd0.5Zn0.5S/Bi2WO6 S-scheme heterojunction for boosted photocatalytic antibiotic oxidation and Cr(VI) reduction , 2022, Advanced Powder Materials.

[11]  Cheng-Hsien Yang,et al.  First-Principles Study of the Optical Properties of TMDC/Graphene Heterostructures , 2022, Photonics.

[12]  Sourav Pal,et al.  2D MoS2-MoSe2 and MoS2-NbS2 Lateral Hetero Structures as Anode Materials for LIBs/SIBs , 2022, Applied Surface Science.

[13]  Mengtao Sun,et al.  Transition Metal Dichalcogenides (TMDCs) Heterostructures: Synthesis, Excitons and Photoelectric Properties , 2022, Chemical record.

[14]  P. Lu,et al.  Type‐II van der Waals Heterostructures Based on AsP and Transition Metal Dichalcogenides: Great Promise for Applications in Solar Cell , 2022, physica status solidi (RRL) – Rapid Research Letters.

[15]  Z. Zhu,et al.  High-Performance Photodetectors Based on MoTe2–MoS2 van der Waals Heterostructures , 2022, ACS omega.

[16]  M. Junaid Iqbal Khan,et al.  Effect of layer sliding on the interfacial electronic properties of intercalated silicene/indium selenide van der Waals heterostructure , 2022, Communications in Theoretical Physics.

[17]  Chunchun Wang,et al.  Rationally designed Ta3N5/BiOCl S-scheme heterojunction with oxygen vacancies for elimination of tetracycline antibiotic and Cr(VI): Performance, toxicity evaluation and mechanism insight , 2022, Journal of Materials Science & Technology.

[18]  Deobrat Singh,et al.  Two-Dimensional Perovskite/HfS2 van der Waals Heterostructure as an Absorber Material for Photovoltaic Applications , 2022, ACS Applied Energy Materials.

[19]  C. Rakhi,et al.  Synthesis and characterization of ZrO2/Bi2MoO6 heterostructured thin films for optoelectronic and photocatalytic applications , 2021, Applied Physics A.

[20]  Lei Wang,et al.  Observation of robust charge transfer under strain engineering in two-dimensional MoS2-WSe2 heterostructures. , 2021, Nanoscale.

[21]  M. Zhang,et al.  Biaxial Strain Improving the Thermoelectric Performance of a Two-Dimensional MoS2/WS2 Heterostructure , 2021, ACS Applied Electronic Materials.

[22]  Y. Sonvane,et al.  Optoelectronic properties of 2D heterojunction ZrO2– MoS2 material using first-principles calculations , 2021 .

[23]  J. Charlier,et al.  Band-Gap Landscape Engineering in Large-Scale 2D Semiconductor van der Waals Heterostructures. , 2021, ACS nano.

[24]  Wei‐Qing Huang,et al.  A two-dimensional MoS2/SnS heterostructure for promising photocatalytic performance: First-principles investigations , 2021 .

[25]  Wei Jiang,et al.  Facile construction of novel Bi2WO6/Ta3N5 Z-scheme heterojunction nanofibers for efficient degradation of harmful pharmaceutical pollutants , 2020 .

[26]  Shaoxian Song,et al.  Using van der Waals heterostructures based on two-dimensional InSe–XS2(X = Mo, W) as promising photocatalysts for hydrogen production , 2020 .

[27]  J. Guan,et al.  Construction of S-scheme g-C3N4/ZrO2 heterostructures for enhancing photocatalytic disposals of pollutants and electrocatalytic hydrogen evolution , 2020 .

[28]  Chuan He,et al.  A two-dimensional MoS2/WSe2 van der Waals heterostructure for enhanced photoelectric performance , 2020 .

[29]  Hairui Liu,et al.  Two-dimensional MoS2/GaN van der Waals heterostructures: tunable direct band alignments and excitonic optical properties for photovoltaic applications , 2019, Journal of Physics D: Applied Physics.

[30]  Sunhee Lee,et al.  Synthesis of two-dimensional MoS2/graphene heterostructure by atomic layer deposition using MoF6 precursor , 2019, Applied Surface Science.

[31]  Wu-Xing Zhou,et al.  Excellent thermoelectric performance induced by interface effect in MoS2/MoSe2 van der Waals heterostructure , 2019, Journal of physics. Condensed matter : an Institute of Physics journal.

[32]  Junhui Weng,et al.  Structures and characteristics of atomically thin ZrO2 from monolayer to bilayer and two-dimensional ZrO2–MoS2 heterojunction , 2019, RSC advances.

[33]  Jijun Zhao,et al.  Eighteen functional monolayer metal oxides: wide bandgap semiconductors with superior oxidation resistance and ultrahigh carrier mobility , 2019, Nanoscale Horizons.

[34]  W. Yue,et al.  Optical Properties of Graphene/MoS2 Heterostructure: First Principles Calculations , 2018, Nanomaterials.

[35]  Junhui Weng,et al.  A honeycomb-like monolayer of HfO2 and the calculation of static dielectric constant eliminating the effect of vacuum spacing. , 2018, Physical chemistry chemical physics : PCCP.

[36]  Jibin Fan,et al.  A comparison study of the structural and mechanical properties of cubic, tetragonal, monoclinic, and three orthorhombic phases of ZrO2 , 2018, Journal of Alloys and Compounds.

[37]  A. Benko,et al.  Anticorrosive ZrO2 and ZrO2-SiO2 layers on titanium substrates for biomedical applications , 2017 .

[38]  Li Li,et al.  Multilayer and open structure of dendritic crosslinked CeO2-ZrO2 composite: Enhanced photocatalytic degradation and water splitting performance , 2017 .

[39]  Poomani Penny Govender,et al.  Cobalt doped ZrO2 decorated multiwalled carbon nanotube: A promising nanocatalyst for photodegradation of indigo carmine and eosin Y dyes , 2016 .

[40]  S. K. Shukla,et al.  Palladium-doped–ZrO2–multiwalled carbon nanotubes nanocomposite: an advanced photocatalyst for water treatment , 2016 .

[41]  E. D. Sherly,et al.  A comparative study of the effects of CuO, NiO, ZrO2 and CeO2 coupling on the photocatalytic activity and characteristics of ZnO , 2016, Korean Journal of Chemical Engineering.

[42]  L. Wirtz,et al.  Vibrational and optical properties of MoS2: From monolayer to bulk , 2015, 1606.03017.

[43]  C. Jin,et al.  Two-Dimensional Layered Heterostructures Synthesized from Core-Shell Nanowires. , 2015, Angewandte Chemie.

[44]  Young-Jun Yu,et al.  Tunable Electrical and Optical Characteristics in Monolayer Graphene and Few-Layer MoS2 Heterostructure Devices. , 2015, Nano letters.

[45]  Kristian Sommer Thygesen,et al.  Computational 2D Materials Database: Electronic Structure of Transition-Metal Dichalcogenides and Oxides , 2015, 1506.02841.

[46]  Ruitao Lv,et al.  Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets. , 2015, Accounts of chemical research.

[47]  Jun Lu,et al.  Free-standing hierarchically sandwich-type tungsten disulfide nanotubes/graphene anode for lithium-ion batteries. , 2014, Nano letters.

[48]  C. Battaglia,et al.  Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides , 2014, Proceedings of the National Academy of Sciences.

[49]  Jian Zhen Ou,et al.  Two‐Dimensional Molybdenum Trioxide and Dichalcogenides , 2013 .

[50]  Wei Xu,et al.  Design, preparation, and durability of TiO2/SiO2 and ZrO2/SiO2 double-layer antireflective coatings in crystalline silicon solar modules , 2013 .

[51]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[52]  Can Ataca,et al.  Stable, Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure , 2012 .

[53]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[54]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[55]  Wei Zhou,et al.  Multi-modal mesoporous TiO2–ZrO2 composites with high photocatalytic activity and hydrophilicity , 2008, Nanotechnology.

[56]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[57]  Wei Jiang,et al.  Enhanced antibiotic degradation performance of Cd0.5Zn0.5S/Bi2MoO6 S-scheme photocatalyst by carbon dot modification , 2023, Journal of Materials Science & Technology.

[58]  K. Lv,et al.  S-Scheme photocatalyst TaON/Bi2WO6 nanofibers with oxygen vacancies for efficient abatement of antibiotics and Cr(VI): Intermediate eco-toxicity analysis and mechanistic insights , 2022, Chinese Journal of Catalysis.

[59]  S. Pal,et al.  2D MoS 2-MoSe 2and MoS 2-NbS 2 Lateral Hetero Structures as Anode Materials for LIBs/SIBs , 2021, SSRN Electronic Journal.

[60]  J. Tominaga,et al.  Bulk TMDCs: Review of Structure and Properties , 2016 .

[61]  Xiaobo Chen,et al.  Facile fabrication of TaON/Bi2MoO6 core–shell S-scheme heterojunction nanofibers for boosting visible-light catalytic levofloxacin degradation and Cr(VI) reduction , 2022 .