A Comparison Result for the Fractional Difference Operator

In this paper, we deduce the Green’s function for a -th order, 1 < 2, discrete fractional boundary value problem with boundary conditions of the type y ( 2) y( 2) = 0,y ( +b) + y( +b) = 0, for , , , 0 and + + 6 0. This extends and generalizes the results of some recent papers. We then show that this Green’s function satisfies a positivity property. From this we deduce a relatively general comparison result for boundary value problems of this sort. In particular, this shows that the fractional difference operator satisfies the same sort of comparison principle that is well-known in the integer-order case.

[1]  F. Atici,et al.  Modeling with fractional difference equations , 2010 .

[2]  Allan Peterson,et al.  The Theory of Differential Equations: Classical and Qualitative , 2003 .

[3]  C. Goodrich,et al.  SOLUTIONS TO A DISCRETE RIGHT-FOCAL FRACTIONAL BOUNDARY VALUE PROBLEM , 2010 .

[4]  Paul W. Eloe,et al.  DISCRETE FRACTIONAL CALCULUS WITH THE NABLA OPERATOR , 2009 .

[5]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[6]  Christopher S. Goodrich,et al.  Existence of a positive solution to a system of discrete fractional boundary value problems , 2011, Appl. Math. Comput..

[7]  P. Eloe,et al.  Initial value problems in discrete fractional calculus , 2008 .

[8]  Christopher S. Goodrich,et al.  Some new existence results for fractional difference equations , 2011 .

[9]  Paul W. Eloe,et al.  Two-point boundary value problems for finite fractional difference equations , 2011 .

[10]  E. Kaufmann,et al.  Positive solutions of a boundary value problem for a nonlinear fractional differential equation. , 2008 .

[11]  A. Peterson,et al.  Dynamic Equations on Time Scales: An Introduction with Applications , 2001 .

[12]  Christopher S. Goodrich,et al.  Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions , 2011, Comput. Math. Appl..

[13]  P. Eloe,et al.  A transform method in discrete fractional calculus , 2007 .

[14]  C. Goodrich ON POSITIVE SOLUTIONS TO NONLOCAL FRACTIONAL AND INTEGER-ORDER DIFFERENCE EQUATIONS , 2011 .

[15]  Daqing Jiang,et al.  Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation , 2009 .

[16]  Paul W. Eloe,et al.  Fractional q-Calculus on a time scale , 2007 .

[17]  Delfim F. M. Torres,et al.  Discrete-time fractional variational problems , 2010, Signal Process..

[18]  Christopher S. Goodrich,et al.  Existence of a positive solution to a class of fractional differential equations , 2010, Appl. Math. Lett..

[19]  Frank Berkshire,et al.  Reviews of Nonlinear Dynamics and Complexity , 2012 .

[20]  Christopher S. Goodrich,et al.  Continuity of solutions to discrete fractional initial value problems , 2010, Comput. Math. Appl..

[21]  Varsha Daftardar-Gejji,et al.  Existence of positive solutions of nonlinear fractional differential equations , 2003 .

[22]  Om P. Agrawal,et al.  Formulation of Euler–Lagrange equations for fractional variational problems , 2002 .