Chemicals, electricity and fuels from biorefineries processing Brazil׳s sugarcane bagasse: Production recipes and minimum selling prices

[1]  Miguel Faria-e-Castro,et al.  Fiscal policy during a pandemic , 2020, Journal of Economic Dynamics and Control.

[2]  M. Lenzen,et al.  Triple bottom line study of a lignocellulosic biofuel industry , 2016 .

[3]  W. V. van Gulik,et al.  Towards large scale fermentative production of succinic acid. , 2014, Current opinion in biotechnology.

[4]  Electo Eduardo Silva Lora,et al.  Sugarcane biorefineries: case studies applied to the Brazilian sugar-alcohol industry. , 2014 .

[5]  Aldo Roberto Ometto,et al.  Life cycle assessment of the sugarcane bagasse electricity generation in Brazil , 2014 .

[6]  Janice Yim Mei Lee,et al.  Electricity consumption from renewable and non-renewable sources and economic growth: Evidence from Latin American countries , 2014 .

[7]  Luis M. Serra,et al.  Exergetic analysis of the integrated first- and second-generation ethanol production from sugarcane , 2013 .

[8]  Marcelo Pereira da Cunha,et al.  Biorefineries for the production of first and second generation ethanol and electricity from sugarcane , 2013 .

[9]  Dennis J. Miller,et al.  A novel process for recovery of fermentation-derived succinic acid: process design and economic analysis. , 2013, Bioresource technology.

[10]  Feni Agostinho,et al.  Energetic-environmental assessment of a scenario for Brazilian cellulosic ethanol , 2013 .

[11]  Guilherme Dantas,et al.  Energy from sugarcane bagasse in Brazil: An assessment of the productivity and cost of different technological routes , 2013 .

[12]  José A. Romagnoli,et al.  Strategic value optimization and analysis of multi-product biomass refineries with multiple stakeholder considerations , 2013, Comput. Chem. Eng..

[13]  Simon J. Bennett,et al.  Using past transitions to inform scenarios for the future of renewable raw materials in the UK , 2012 .

[14]  E. L. L. Rovere,et al.  Investments of oil majors in liquid biofuels: The role of diversification, integration and technological lock-ins , 2012 .

[15]  M. Liszka,et al.  Parametric study of GT and ASU integration in case of IGCC with CO2 removal , 2012 .

[16]  K. Rocha,et al.  A Remuneração dos Investimentos em Energia Renovável no Brasil - Uma Proposta Metodológica ao BENCHMARK da UNFCCC Para o Brasil , 2012 .

[17]  Pravat K. Swain,et al.  Biomass to liquid: A prospective challenge to research and development in 21st century , 2011 .

[18]  Alexandre Szklo,et al.  Integrated gasification combined cycle and carbon capture: A risky option to mitigate CO2 emissions of coal-fired power plants , 2011 .

[19]  Janusz A. Kozinski,et al.  Alcohols as alternative fuels: An overview , 2011 .

[20]  Hao Tan,et al.  A conceptual lignocellulosic 'feed+fuel' biorefinery and its application to the linked biofuel and cattle raising industries in Brazil , 2011 .

[21]  Gabriella Fiorentino,et al.  Cropping bioenergy and biomaterials in marginal land: The added value of the biorefinery concept , 2011 .

[22]  N. Pereira,et al.  Succinic acid production from sugarcane bagasse hemicellulose hydrolysate by Actinobacillus succinogenes , 2011, Journal of Industrial Microbiology & Biotechnology.

[23]  J. R. Hess,et al.  Process Design and Economics for Conversion of Lignocellulosic Biomass to Ethanol: Thermochemical Pathway by Indirect Gasification and Mixed Alcohol Synthesis , 2011 .

[24]  F. Schultmann,et al.  Logistics of Renewable Raw Materials , 2011 .

[25]  Ryan Davis,et al.  Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover , 2011 .

[26]  F. Maréchal,et al.  Thermochemical production of liquid fuels from biomass: Thermo-economic modeling, process design and process integration analysis , 2010 .

[27]  Aidong Yang,et al.  On the use of systems technologies and a systematic approach for the synthesis and the design of future biorefineries , 2010, Comput. Chem. Eng..

[28]  H. Chum,et al.  A techno-economic evaluation of the effects of centralized cellulosic ethanol and co-products refinery options with sugarcane mill clustering , 2010 .

[29]  Gjalt Huppes,et al.  Biorefining of lignocellulosic feedstock--Technical, economic and environmental considerations. , 2010, Bioresource technology.

[30]  Francesco Cherubini,et al.  The biorefinery concept: Using biomass instead of oil for producing energy and chemicals , 2010 .

[31]  Joseph J. Bozell,et al.  Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited , 2010 .

[32]  Prasant Kumar Rout,et al.  Production of first and second generation biofuels: A comprehensive review , 2010 .

[33]  Arnaldo Walter,et al.  Combined production of second-generation biofuels and electricity from sugarcane residues , 2010 .

[34]  Luis M. Serra,et al.  Reduction of irreversibility generation in sugar and ethanol production from sugarcane , 2009 .

[35]  Fuat E. Celik,et al.  Large‐scale gasification‐based coproduction of fuels and electricity from switchgrass , 2009 .

[36]  Guangjian Liu,et al.  Fischer–Tropsch fuels from coal and biomass: Strategic advantages of once-through (“polygeneration”) configurations , 2009 .

[37]  S. Kabasci,et al.  Succinic Acid: A New Platform Chemical for Biobased Polymers from Renewable Resources , 2008 .

[38]  Santosh K. Gangwal,et al.  A Review of Recent Literature to Search for an Efficient Catalytic Process for the Conversion of Syngas to Ethanol , 2008 .

[39]  A. N. Stranges,et al.  A history of the fischer-tropsch synthesis in Germany 1926–45 , 2007 .

[40]  Luis M. Serra,et al.  Analysis of process steam demand reduction and electricity generation in sugar and ethanol production from sugarcane , 2007 .

[41]  Don W. Green,et al.  Perry's Chemical Engineers' Handbook , 2007 .

[42]  Yongseung Yun,et al.  Effect of air separation unit integration on integrated gasification combined cycle performance and NOx emission characteristics , 2007 .

[43]  Manfred Lenzen,et al.  Examining the global environmental impact of regional consumption activities — Part 2: Review of input–output models for the assessment of environmental impacts embodied in trade , 2007 .

[44]  Hervé Théry Brésil : São Paulo : São Paulo : Paulista : FIESP Federação das Indústrias do Estado de São Paulo et UNIBANCO , 2006 .

[45]  R. Borup,et al.  Dimethyl ether (DME) as an alternative fuel , 2006 .

[46]  E. Lora,et al.  Estimate of ecological efficiency for thermal power plants in Brazil , 2005 .

[47]  A. Faaij,et al.  Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term , 2005 .

[48]  Johnathan E. Holladay,et al.  Top Value Added Chemicals From Biomass. Volume 1 - Results of Screening for Potential Candidates From Sugars and Synthesis Gas , 2004 .

[49]  R. Herman Advances in catalytic synthesis and utilization of higher alcohols , 2000 .

[50]  J. Zeikus,et al.  Biotechnology of succinic acid production and markets for derived industrial products , 1999, Applied Microbiology and Biotechnology.

[51]  Waldir Antonio Bizzo,et al.  The Generation Of Residual Biomass During The Production Of Bio-ethanol From Sugarcane, Its Characterization And Its Use In Energy Production , 2014 .

[52]  Alessandra Magrini,et al.  Building a “Bio-Perspective” from Petroleum Revenues: A Pathway Through Bioplatforms` Oriented Biofineries in Rio de Janeiro State, Brazil , 2014 .

[53]  Rubens Maciel Filho,et al.  Integrated versus stand-alone second generation ethanol production from sugarcane bagasse and trash. , 2012, Bioresource technology.

[54]  Paulo Luiz de Andrade Coutinho,et al.  Roadmap tecnológico em matérias-primas renováveis: uma base para a construção de políticas e estratégias no Brasil , 2011 .

[55]  Joaquim E. A. Seabra,et al.  Comparative analysis for power generation and ethanol production from sugarcane residual biomass in Brazil , 2011 .

[56]  José Augusto Rosário Rodrigues,et al.  From the mill to a biorefinery: the sugar factory as an industrial enterprise for the generation of biochemicals and biofuels , 2011 .

[57]  Agência Nacional do Petróleo,et al.  Anuário Estatístico Brasileiro do Petróleo, Gás Natural e Biocombustíveis 2009 , 2009 .

[58]  William M. Vatavuk,et al.  Updating the CE Plant Cost Index , 2002 .

[59]  A. Basu,et al.  Dimethyl ether: A fuel for the 21st century , 1997 .

[60]  J. Tinbergen,et al.  Input–Output Analysis in Education , 1987 .