Physiological Methods to Solve the Force-Sharing Problem in Biomechanics

[1]  Werner Schiehlen,et al.  Dynamic Analysis of Human Gait Disorder and Metabolical Cost Estimation , 2006 .

[2]  F. Zajac Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. , 1989, Critical reviews in biomedical engineering.

[3]  M. Pandy,et al.  A Dynamic Optimization Solution for Vertical Jumping in Three Dimensions. , 1999, Computer methods in biomechanics and biomedical engineering.

[4]  Hans Ingo Weber,et al.  A 'cheap' optimal control approach to estimate muscle forces in musculoskeletal systems. , 2006, Journal of biomechanics.

[5]  H. Ralston Energetics of Human Walking , 1976 .

[6]  G. Loeb,et al.  Feedback gains for correcting small perturbations to standing posture , 1991 .

[7]  M G Pandy,et al.  A parameter optimization approach for the optimal control of large-scale musculoskeletal systems. , 1992, Journal of biomechanical engineering.

[8]  Philip E. Martin,et al.  A Model of Human Muscle Energy Expenditure , 2003, Computer methods in biomechanics and biomedical engineering.

[9]  M L Hull,et al.  Evaluation of performance criteria for simulation of submaximal steady-state cycling using a forward dynamic model. , 1997, Journal of biomechanical engineering.

[10]  A. Kecskeméthy,et al.  Rapid identification of muscle activation profiles via optimization and smooth profile patches , 2005 .

[11]  R Bartlett,et al.  Inverse optimization: functional and physiological considerations related to the force-sharing problem. , 1997, Critical reviews in biomedical engineering.

[12]  Richard R Neptune,et al.  Biomechanics and muscle coordination of human walking: part II: lessons from dynamical simulations and clinical implications. , 2003, Gait & posture.

[13]  Douglas G. Stuart,et al.  Neural Control of Locomotion , 1976, Advances in Behavioral Biology.

[14]  A. J. van den Bogert,et al.  Standard mechanical energy analyses do not correlate with muscle work in cycling. , 1997, Journal of biomechanics.

[15]  Steven C. Chapra,et al.  Numerical Methods for Engineers , 1986 .

[16]  W. Schiehlen Computational dynamics : theory and applications of multibody systems , 2006 .

[17]  Scott L Delp,et al.  Generating dynamic simulations of movement using computed muscle control. , 2003, Journal of biomechanics.

[18]  H. Hatze,et al.  Energy-optimal controls in the mammalian neuromuscular system , 1977, Biological Cybernetics.

[19]  R. Crowninshield,et al.  A physiologically based criterion of muscle force prediction in locomotion. , 1981, Journal of biomechanics.

[20]  Akinori Nagano,et al.  Effects of Neuromuscular Strength Training on Vertical Jumping Performance— A Computer Simulation Study , 2001 .

[21]  L. Menegaldo,et al.  Biomechanical modeling and optimal control of human posture. , 2003, Journal of biomechanics.

[22]  P. Leva Adjustments to Zatsiorsky-Seluyanov's segment inertia parameters. , 1996 .

[23]  M. Pandy,et al.  Dynamic optimization of human walking. , 2001, Journal of biomechanical engineering.

[24]  Marko Ackermann,et al.  Dynamics and Energetics of Walking with Prostheses , 2007 .

[25]  H. Hatze The complete optimization of a human motion , 1976 .

[26]  M. Pandy,et al.  A phenomenological model for estimating metabolic energy consumption in muscle contraction. , 2004, Journal of biomechanics.

[27]  M L Audu,et al.  A dynamic optimization technique for predicting muscle forces in the swing phase of gait. , 1987, Journal of biomechanics.

[28]  R B Stein,et al.  Estimating mechanical parameters of leg segments in individuals with and without physical disabilities. , 1996, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[29]  R. Riener,et al.  Identification of passive elastic joint moments in the lower extremities. , 1999, Journal of biomechanics.