Scheduling Promotion Vehicles to Boost Profits

In addition to setting price discounts, retailers need to decide how to schedule promotion vehicles, such as flyers and TV commercials. Unlike the promotion pricing problem that received great attention from both academics and practitioners, the promotion vehicle scheduling problem was largely overlooked, and our goal is to study this problem both theoretically and in practice. We model the problem of scheduling promotion vehicles to maximize profits as a nonlinear bipartite matching-type problem, where promotion vehicles should be assigned to time periods, subject to capacity constraints. Our modeling approach is motivated and calibrated using actual data in collaboration with Oracle Retail, leading us to introduce and study a class of models for which the boost effects of promotion vehicles on demand are multiplicative. From a technical perspective, we prove that the general setting considered is computationally intractable. Nevertheless, we develop approximation algorithms and propose a compact integer...

[1]  Dick R. Wittink,et al.  Varying parameter models to accommodate dynamic promotion effects , 1998 .

[2]  Jon Lee,et al.  Approximate Nonlinear Optimization over Weighted Independence Systems , 2009, SIAM J. Discret. Math..

[3]  Dorit S. Hochbaum,et al.  Complexity and algorithms for nonlinear optimization problems , 2007, Ann. Oper. Res..

[4]  Refael Hassin,et al.  Maximizing Classes of Two-Parameter Objectives Over Matroids , 1989, Math. Oper. Res..

[5]  Piotr Berman,et al.  A d/2 Approximation for Maximum Weight Independent Set in d-Claw Free Graphs , 2000, Nord. J. Comput..

[6]  Dimitris Bertsimas,et al.  Optimization over integers , 2005 .

[7]  M. Köppe On the Complexity of Nonlinear Mixed-Integer Optimization , 2012 .

[8]  Shmuel Onn,et al.  Convex Matroid Optimization , 2002, SIAM J. Discret. Math..

[9]  Katta G. Murty,et al.  Some NP-complete problems in linear programming , 1982, Oper. Res. Lett..

[10]  David P. Williamson,et al.  The Design of Approximation Algorithms , 2011 .

[11]  M. Fisher,et al.  Assortment Planning: Review of Literature and Industry Practice , 2008 .

[12]  Magnús M. Halldórsson,et al.  Greedy Approximations of Independent Sets in Low Degree Graphs , 1995, ISAAC.

[13]  Michael T. Swisher,et al.  Promocast: a New Forecasting Method for Promotion Planning , 1999 .

[14]  G. Gutin Independence and Cliques , 2013 .

[15]  David Simchi-Levi,et al.  Coordinating Inventory Control and Pricing Strategies with Random Demand and Fixed Ordering Cost: The Infinite Horizon Case , 2004, Math. Oper. Res..

[16]  Carrie M. Heilman,et al.  Pleasant Surprises: Consumer Response to Unexpected In-Store Coupons , 2002 .

[17]  Mihalis Yannakakis,et al.  The complexity of restricted spanning tree problems , 1982, JACM.

[18]  Lars Engebretsen,et al.  Clique Is Hard To Approximate Within , 2000 .

[19]  Vijay V. Vazirani,et al.  Matching is as easy as matrix inversion , 1987, STOC.

[20]  Shmuel Onn,et al.  Nonlinear bipartite matching , 2008, Discret. Optim..

[21]  Jonas Holmerin,et al.  Clique Is Hard to Approximate within n1-o(1) , 2000, ICALP.

[22]  Daniel Corsten,et al.  Stock-Outs Cause Walkouts , 2004 .

[23]  Felipe Caro,et al.  Inventory Management of a Fast-Fashion Retail Network , 2007, Oper. Res..

[24]  Éva Tardos,et al.  Algorithm design , 2005 .

[25]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[26]  K. Talluri,et al.  The Theory and Practice of Revenue Management , 2004 .

[27]  Oded Schwartz,et al.  On the complexity of approximating k-set packing , 2006, computational complexity.

[28]  Christos H. Papadimitriou,et al.  Polytopes and Complexity , 1984 .

[29]  Esther M. Arkin,et al.  On Local Search for Weighted k-Set Packing , 1998, Math. Oper. Res..

[30]  Scott A. Neslin,et al.  The Determinants of Pre- and Postpromotion Dips in Sales of Frequently Purchased Goods , 2004 .

[31]  Esther M. Arkin,et al.  On Local Search for Weighted k-Set Packing , 1997, Math. Oper. Res..

[32]  Ronald L. Rivest,et al.  Introduction to Algorithms, 3rd Edition , 2009 .

[33]  Dick R. Wittink,et al.  The Estimation of Pre- and Postpromotion Dips with Store-Level Scanner Data , 2000 .

[34]  Georgia Perakis,et al.  The Impact of Linear Optimization on Promotion Planning , 2014, Oper. Res..

[35]  Viggo Kann,et al.  Some APX-completeness results for cubic graphs , 2000, Theor. Comput. Sci..

[36]  Panos M. Pardalos,et al.  The maximum clique problem , 1994, J. Glob. Optim..

[37]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[38]  Katia Campo,et al.  Towards understanding consumer response to stock-outs , 2000 .

[39]  Piotr Berman,et al.  On Approximation Properties of the Independent Set Problem for Low Degree Graphs , 1999, Theory of Computing Systems.

[40]  Eva Riccomagno,et al.  Nonlinear Matroid Optimization and Experimental Design , 2007, SIAM J. Discret. Math..

[41]  Jc Jan Fransoo,et al.  Inventory control of perishables in supermarkets , 2006 .

[42]  Raymond Hemmecke,et al.  Nonlinear Integer Programming , 2009, 50 Years of Integer Programming.

[43]  Katta G. Murty,et al.  Matchings in colored bipartite networks , 2002, Discret. Appl. Math..

[44]  Barun Chandra,et al.  Greedy local improvement and weighted set packing approximation , 2001, SODA '99.

[45]  R. Phillips,et al.  Pricing and Revenue Optimization , 2005 .