New directions for contact integrators

Contact integrators are a family of geometric numerical schemes which guarantee the conservation of the contact structure. In this work we review the construction of both the variational and Hamiltonian versions of these methods. We illustrate some of the advantages of geometric integration in the dissipative setting by focusing on models inspired by recent studies in celestial mechanics and cosmology.

[1]  Alessandro Bravetti,et al.  Contact Hamiltonian Dynamics: The Concept and Its Use , 2017, Entropy.

[2]  A. Bravetti,et al.  Contact Hamiltonian Mechanics , 2016, 1604.08266.

[3]  Alexandre Anahory Simoes,et al.  On the geometry of discrete contact mechanics , 2021, J. Nonlinear Sci..

[4]  Chao Wang,et al.  Contact Hamiltonian dynamics: Variational principles, invariants, completeness and periodic behavior , 2018, Annals of Physics.

[5]  Mátyás Szücs,et al.  Four Spacetime Dimensional Simulation of Rheological Waves in Solids and the Merits of Thermodynamics , 2020, Entropy.

[6]  Sean Gryb,et al.  When scale is surplus , 2021, Synthese.

[7]  M. Seri,et al.  Geometric numerical integration of Lìenard systems via a contact Hamiltonian approach , 2020, Mathematics.

[8]  Marcello Seri,et al.  Numerical integration in Celestial Mechanics: a case for contact geometry , 2019, ArXiv.

[9]  Michael Betancourt,et al.  Bregman dynamics, contact transformations and convex optimization , 2019, Information Geometry.

[10]  H. Yoshida Construction of higher order symplectic integrators , 1990 .

[11]  J. Marsden,et al.  Discrete mechanics and variational integrators , 2001, Acta Numerica.

[12]  Marcello Seri,et al.  Contact variational integrators , 2019, Journal of Physics A: Mathematical and Theoretical.

[13]  David Sloan Dynamical similarity , 2018, Physical Review D.

[14]  David Sloan New action for cosmology , 2020, 2010.07329.

[15]  Stable and unstableperiodic solutions for quadratic contact Hamiltonians with a small parameter , 2019, Journal of Physics: Conference Series.

[16]  H. Geiges An Introduction to Contact Topology by Hansjörg Geiges , 2008 .

[17]  A. Bravetti,et al.  Thermostat algorithm for generating target ensembles. , 2015, Physical review. E.

[18]  M. Betancourt,et al.  Adiabatic Monte Carlo , 2014 .