New directions for contact integrators
暂无分享,去创建一个
[1] Alessandro Bravetti,et al. Contact Hamiltonian Dynamics: The Concept and Its Use , 2017, Entropy.
[2] A. Bravetti,et al. Contact Hamiltonian Mechanics , 2016, 1604.08266.
[3] Alexandre Anahory Simoes,et al. On the geometry of discrete contact mechanics , 2021, J. Nonlinear Sci..
[4] Chao Wang,et al. Contact Hamiltonian dynamics: Variational principles, invariants, completeness and periodic behavior , 2018, Annals of Physics.
[5] Mátyás Szücs,et al. Four Spacetime Dimensional Simulation of Rheological Waves in Solids and the Merits of Thermodynamics , 2020, Entropy.
[6] Sean Gryb,et al. When scale is surplus , 2021, Synthese.
[7] M. Seri,et al. Geometric numerical integration of Lìenard systems via a contact Hamiltonian approach , 2020, Mathematics.
[8] Marcello Seri,et al. Numerical integration in Celestial Mechanics: a case for contact geometry , 2019, ArXiv.
[9] Michael Betancourt,et al. Bregman dynamics, contact transformations and convex optimization , 2019, Information Geometry.
[10] H. Yoshida. Construction of higher order symplectic integrators , 1990 .
[11] J. Marsden,et al. Discrete mechanics and variational integrators , 2001, Acta Numerica.
[12] Marcello Seri,et al. Contact variational integrators , 2019, Journal of Physics A: Mathematical and Theoretical.
[13] David Sloan. Dynamical similarity , 2018, Physical Review D.
[14] David Sloan. New action for cosmology , 2020, 2010.07329.
[15] Stable and unstableperiodic solutions for quadratic contact Hamiltonians with a small parameter , 2019, Journal of Physics: Conference Series.
[16] H. Geiges. An Introduction to Contact Topology by Hansjörg Geiges , 2008 .
[17] A. Bravetti,et al. Thermostat algorithm for generating target ensembles. , 2015, Physical review. E.
[18] M. Betancourt,et al. Adiabatic Monte Carlo , 2014 .