Kinematics, Structural Mechanics, and Design of Origami Structures with Smooth Folds

Origami provides novel approaches to the fabrication, assembly, and functionality of engineering structures in various fields such as aerospace, robotics, etc. With the increase in complexity of the geometry and materials for origami structures that provide engineering utility, models and design methods for such structures have become essential. Currently available models and design methods for origami structures are generally limited to the idealization of the folds as creases of zeroth-order geometric continuity. Such an idealization is not proper for origami structures having non-negligible thickness or maximum curvature at the folds restricted by material limitations. Thus, for general structures, creased folds of merely zeroth-order geometric continuity are not appropriate representations of structural response and a new approach is needed. The first contribution of this dissertation is a model for the kinematics of origami structures having realistic folds of non-zero surface area and exhibiting higher-order geometric continuity, here termed smooth folds. The geometry of the smooth folds and constraints on their associated kinematic variables are presented. A numerical implementation of the model allowing for kinematic simulation of structures having arbitrary fold patterns is also described. Examples illustrating the capability of the model to capture realistic structural folding response are provided. Subsequently, a method for the design of a single planar sheet and its pattern of smooth folds that morphs into a given threedimensional goal shape, discretized as a polygonal mesh, is presented. The design parameterization of the planar sheet and the constraints that allow for a valid pattern of smooth folds and approximation of the goal shape in a known folded configuration are presented. Various testing examples considering goal shapes of diverse geometries are provided. Afterwards, a model for the structural mechanics of continuum origami bodies with smooth folds is presented. Such a model entails the integration of the presented kinematic model and existing plate theories in order to obtain a structural representation for folds having non-zero thickness and comprised of arbitrary materials. The model is validated against finite element analysis. The last contribution addresses the design and analysis of active material-based self-folding structures that morph via simultaneous folding towards arbitrary three-dimensional goal shapes starting from a planar configuration. Implementation examples including shape memory alloy (SMA)-based self-folding structures are provided. Edwin Peraza Hernandez is a PHD candidate in the Aerospace Engineering Department working under the supervision of Professors Dimitris Lagoudas and Darren Hartl. His research interests are in the areas of active material-based morphing structures and origami. Edwin has co-authored 10 peer-reviewed journal publications and 13 conference proceedings papers. He is continuing his research as a postdoc in the Aerospace Engineering Department.

[1]  Ivan Poupyrev,et al.  Gummi: a bendable computer , 2004, CHI '04.

[2]  Zhonghua Xi,et al.  Folding Rigid Origami With Closure Constraints , 2014 .

[3]  Joseph M. Gattas,et al.  Quasi-static impact response of alternative origami-core sandwich panels , 2013 .

[4]  Levi H. Dudte,et al.  Geometric mechanics of curved crease origami. , 2012, Physical review letters.

[5]  Erik D. Demaine,et al.  Geometric Folding Algorithms: Map Folding , 2007 .

[6]  Tyler Raymond Halbert,et al.  An Improved Algorithm for Sequential Information-Gathering Decisions in Design under Uncertainty , 2015 .

[7]  Zhonghua Xi,et al.  Plan folding motion for rigid self-folding machine via discrete domain sampling , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[8]  Tamal K. Dey,et al.  A new technique to compute polygonal schema for 2-manifolds with application to null-homotopy detection , 1995, Discret. Comput. Geom..

[9]  Sridhar Kota,et al.  Design of Compliant Mechanisms for Morphing Structural Shapes , 2003 .

[10]  Paolo Cignoni,et al.  A comparison of mesh simplification algorithms , 1998, Comput. Graph..

[11]  Anton Nijholt,et al.  Smart material interfaces as a methodology for interaction: a survey of SMIs' state of the art and development , 2013, SMI '13.

[12]  Liang-Boon Wee,et al.  Design of a novel compliant differential Shape Memory Alloy actuator , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[13]  A. Lendlein,et al.  Multifunctional Shape‐Memory Polymers , 2010, Advanced materials.

[14]  Yang Li,et al.  Thin-Walled Open-Section Origami Beams for Energy Absorption , 2014 .

[15]  Emmanuel Baranger,et al.  Sandwich Structures with folded core: mechanical modeling and impact simulations , 2009 .

[16]  Neil Morgan,et al.  Medical shape memory alloy applications—the market and its products , 2004 .

[17]  D. Lagoudas,et al.  SHAPE MEMORY ALLOY LAMINATE FOR DESIGN OF SELF-FOLDING RECONFIGURABLE STRUCTURES , 2013 .

[18]  Pedro M Reis,et al.  Transforming architectures inspired by origami , 2015, Proceedings of the National Academy of Sciences.

[19]  Larry L. Howell,et al.  A Preliminary Process for Origami-Adapted Design , 2015 .

[20]  Dimitris C. Lagoudas,et al.  An Experimental and Numerical Study of Shape Memory Alloy-Based Tensegrity/Origami Structures , 2015 .

[21]  Jiayao Ma,et al.  Axial Crushing of Thin-Walled Tubes With Kite-Shape Pattern , 2015 .

[22]  E. Demaine,et al.  Self-folding with shape memory composites† , 2013 .

[23]  Shoji Takeuchi,et al.  Foldable Parylene Origami Sheets Covered with Cells: Toward Applications in Bio-Implantable Devices , 2016 .

[24]  David Zeb Rocklin,et al.  The Science of Origami , 2003, Science.

[25]  Wei Li,et al.  Novel Pixelated Multicellular Representation for Origami Structures That Innovates Computational Design and Control , 2013 .

[26]  David H. Gracias,et al.  Laser triggered sequential folding of microstructures , 2012 .

[27]  Larry L. Howell,et al.  Identifying links between origami and compliant mechanisms , 2011 .

[28]  Toyohide Watanabe,et al.  Construction of 3-D Paper-made Objects from Crease Patterns , 2005, MVA.

[29]  Vladimir Brailovski,et al.  Shape memory alloys : fundamentals, modeling and applications , 2003 .

[30]  Robert J. Wood,et al.  Self-folding shape memory laminates for automated fabrication , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[31]  Qian Cheng,et al.  Folding paper-based lithium-ion batteries for higher areal energy densities. , 2013, Nano letters.

[32]  Byoungkwon An,et al.  Designing and programming self-folding sheets , 2014, Robotics Auton. Syst..

[33]  Thomas C. Hull,et al.  Programming Reversibly Self‐Folding Origami with Micropatterned Photo‐Crosslinkable Polymer Trilayers , 2015, Advanced materials.

[34]  Alastair Johnson,et al.  Sandwich structures with textile-reinforced composite foldcores under impact loads , 2010 .

[35]  Tomohiro Tachi,et al.  Freeform Rigid-Foldable Structure using Bidirectionally Flat-Foldable Planar Quadrilateral Mesh , 2010, AAG.

[36]  Yanju Liu,et al.  Shape memory polymers and their composites in aerospace applications: a review , 2014 .

[37]  Sicong Liu,et al.  The Rigid Origami Patterns for Flat Surface , 2013 .

[38]  Rakesh K. Kapania,et al.  A survey of recent shell finite elements , 2000 .

[39]  Roland W. Lewis,et al.  Three-dimensional unstructured mesh generation: Part 2. Surface meshes , 1996 .

[40]  Eitan Grinspun,et al.  Flexible Developable Surfaces , 2012, Comput. Graph. Forum.

[41]  Gregory S. Chirikjian,et al.  Origami Rotors: Imparting Continuous Rotation to a Moving Platform Using Compliant Flexure Hinges , 2013 .

[42]  David Eppstein,et al.  Ununfoldable polyhedra with convex faces , 1999, Comput. Geom..

[43]  Charles Michael Wheeler,et al.  Soft Origami: Classification, Constraint, and Actuation of Highly Compliant Origami Structures , 2015 .

[44]  Tomohiro Tachi Generalization of rigid foldable quadrilateral mesh origami , 2009 .

[45]  Xiang Zhou,et al.  Design of three-dimensional origami structures based on a vertex approach , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[46]  Alfred J. Crosby,et al.  Adaptive polymer particles , 2008 .

[47]  James G. Boyd,et al.  A validated model for induction heating of shape memory alloy actuators , 2016 .

[48]  K A Seffen,et al.  Compliant shell mechanisms , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[49]  Frank Simon,et al.  A Novel Approach for the Fabrication of Silica and Silica/Metal Hybrid Microtubes , 2009 .

[50]  Mary Frecker,et al.  Finite element analysis and validation of dielectric elastomer actuators used for active origami , 2014 .

[51]  Jun Mitani,et al.  A Method for Designing Crease Patterns for Flat-Foldable Origami with Numerical Optimization , 2011 .

[52]  Wei Jiang,et al.  Origami-inspired building block and parametric design for mechanical metamaterials , 2016 .

[53]  Daniela Rus,et al.  An untethered miniature origami robot that self-folds, walks, swims, and degrades , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[54]  Mary Frecker,et al.  Bistable Compliant Mechanism Using Magneto Active Elastomer Actuation , 2014 .

[55]  Jin-seong Park,et al.  Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors , 2009 .

[56]  Tomohiro Tachi,et al.  Origamizing Polyhedral Surfaces , 2010, IEEE Transactions on Visualization and Computer Graphics.

[57]  Tetsuo Ida,et al.  Computational origami environment on the web , 2008, Frontiers of Computer Science in China.

[58]  R. Xiao,et al.  Functional stimuli responsive hydrogel devices by self-folding , 2014 .

[59]  David H Gracias,et al.  Three-dimensional fabrication at small size scales. , 2010, Small.

[60]  Tetsuo Ida,et al.  Computational Origami System Eos , 2006 .

[61]  Ashley P. Thrall,et al.  Accordion shelters: A historical review of origami-like deployable shelters developed by the US military , 2014 .

[62]  M. Dickey,et al.  “2D or not 2D”: Shape-programming polymer sheets , 2016 .

[63]  Hao Yan,et al.  Dna Origami: a History and Current Perspective This Review Comes from a Themed Issue on Nanotechnology and Miniaturization Edited Structural Development Assembly Approaches Single-molecule Detection Material Organization , 2022 .

[64]  Roel Vertegaal,et al.  PaperPhone: understanding the use of bend gestures in mobile devices with flexible electronic paper displays , 2011, CHI.

[65]  Manan Arya,et al.  Packaging and Deployment of Large Planar Spacecraft Structures , 2016 .

[66]  Yoji Okabe,et al.  Designing of self-deploying origami structures using geometrically misaligned crease patterns , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[67]  Joseph M. Gattas,et al.  The behaviour of curved-crease foldcores under low-velocity impact loads , 2015 .

[68]  Tyler Halbert,et al.  Numerically validated reduced-order model for laminates containing shape memory alloy wire meshes , 2016 .

[69]  Erik D. Demaine,et al.  Recent Results in Computational Origami , 2002 .

[70]  M. Frecker,et al.  Investigating the performance and properties of dielectric elastomer actuators as a potential means to actuate origami structures , 2014 .

[71]  Mary Frecker,et al.  Optimization of a Dynamic Model of Magnetic Actuation of an Origami Mechanism , 2015 .

[72]  Alejandro R. Diaz Origami Folding and Bar Frameworks , 2014 .

[73]  Tomohiro Tachi,et al.  Simulation of Rigid Origami , 2006 .

[74]  Larry L. Howell,et al.  Oriceps: Origami-Inspired Forceps , 2013 .

[75]  Thomas C. Hull,et al.  A Mathematical Model for Non-Flat Origami , 2002 .

[76]  Y. Bar-Cohen,et al.  Electroactive Polymer Actuators and Sensors , 2008 .

[77]  Tomohiro Tachi Designing Rigidly Foldable Horns Using Bricard's Octahedron , 2015 .

[78]  K. Eriksson,et al.  Airbag Folding Based on Origami Mathematics , 2006 .

[79]  Brett Michael Cowan Magnetically Induced Actuation and Optimization of the Miura-ori Structure , 2015 .

[80]  Robert J. Lang,et al.  One-, Two-, and Multi-Fold Origami Axioms , 2006 .

[81]  Christopher L. Bertagne,et al.  Simulating coupled thermal-mechanical interactions in morphing radiators , 2015, Smart Structures.

[82]  Koji Ikuta,et al.  Micro/miniature shape memory alloy actuator , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[83]  Shigeki Nashima,et al.  Optical actuation of micromirrors fabricated by the micro-origami technique , 2003 .

[84]  Wei Li,et al.  A Novel Method to Design and Optimize Flat-Foldable Origami Structures Through a Genetic Algorithm , 2014, J. Comput. Inf. Sci. Eng..

[85]  Ergun Akleman,et al.  Towards building smart self-folding structures , 2013, Comput. Graph..

[86]  Terrence A. Weisshaar,et al.  Aeroelastic Studies on a Folding Wing Configuration , 2005 .

[87]  Larry L. Howell,et al.  A Classification of Action Origami as Systems of Spherical Mechanisms , 2013 .

[88]  Vijay Kumar,et al.  A Simulator for Origami-Inspired Self-Reconfigurable Robots , 2011 .

[89]  Makoto Ishida,et al.  An origami-inspired ultrastretchable bioprobe film device , 2016, 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS).

[90]  Christian D. Santangelo,et al.  The shape and mechanics of curved-fold origami structures , 2012, 1210.0778.

[91]  M. Adda-Bedia,et al.  Elastic theory of origami-based metamaterials. , 2016, Physical review. E.

[92]  Sergio Pellegrino,et al.  Wrapping Thick Membranes with Slipping Folds , 2015 .

[93]  K. Kuribayashi,et al.  Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil , 2006 .

[94]  L. J. Lee,et al.  Self-folding of three-dimensional hydrogel microstructures. , 2005, The journal of physical chemistry. B.

[95]  Roel Vertegaal,et al.  PaperFold: Evaluating Shape Changes for Viewport Transformations in Foldable Thin-Film Display Devices , 2015, Tangible and Embedded Interaction.

[96]  M. Dickey,et al.  Self-Folding Origami Microstrip Antennas , 2014, IEEE Transactions on Antennas and Propagation.

[97]  Alastair Johnson,et al.  Mechanical tests for foldcore base material properties , 2009 .

[98]  Martin L. Dunn,et al.  Active origami by 4D printing , 2014 .

[99]  Tetsuo Ida,et al.  Modeling Origami for Computational Construction and Beyond , 2007, ICCSA.

[100]  Mary Frecker,et al.  Differentiating Bending From Folding in Origami Engineering Using Active Materials , 2014 .

[101]  Dimitris C. Lagoudas,et al.  Analysis and Optimization of a Shape Memory Alloy-Based Self-Folding Sheet Considering Material Uncertainties , 2015 .

[102]  David Dureisseix,et al.  An Overview of Mechanisms and Patterns with Origami , 2012 .

[103]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[104]  A. Mata,et al.  Characterization of Polydimethylsiloxane (PDMS) Properties for Biomedical Micro/Nanosystems , 2005, Biomedical microdevices.

[105]  Erik D. Demaine,et al.  Curved Crease Folding – a Review on Art, Design and Mathematics , 2011 .

[106]  Jeff Erickson,et al.  Optimally Cutting a Surface into a Disk , 2002, SCG '02.

[107]  Tosiyasu L. Kunii,et al.  Bending and creasing virtual paper , 1994, IEEE Computer Graphics and Applications.

[108]  Spencer P. Magleby,et al.  HanaFlex: a large solar array for space applications , 2015, Defense + Security Symposium.

[109]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[110]  A. Diaz,et al.  Mechanical properties of electrochemically prepared polypyrrole films , 1983 .

[111]  Yan Chen,et al.  Folding a Patterned Cylinder by Rigid Origami , 2011 .

[112]  Stefan Seelecke,et al.  BATMAV: a 2-DOF bio-inspired flapping flight platform , 2010, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[113]  Thomas Evans,et al.  Deployable and Foldable Arrays of Spatial Mechanisms , 2015 .

[114]  Yi Sun,et al.  Sensor and actuator integrated low-profile robotic origami , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[115]  Hua Ma,et al.  Origami-inspired metamaterial absorbers for improving the larger-incident angle absorption , 2015 .

[116]  Z. You,et al.  Miura-Base Rigid Origami: Parameterizations of First-Level Derivative and Piecewise Geometries , 2013 .

[117]  Darren J. Hartl,et al.  Design and Optimization of an SMA-Based Self-Folding Structural Sheet With Sparse Insulating Layers , 2014 .

[118]  Gregory W. Reich,et al.  Inverse Design of LCN Films for Origami Applications Using Topology Optimization , 2014 .

[119]  Robert J. Wood,et al.  Self-assembling sensors for printable machines , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[120]  Robert J. Wood,et al.  Towards printable robotics: Origami-inspired planar fabrication of three-dimensional mechanisms , 2011, 2011 IEEE International Conference on Robotics and Automation.

[121]  F. Schneider,et al.  Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS , 2009 .

[122]  Karthik Ramani,et al.  Reconfigurable Foldable Spatial Mechanisms and Robotic Forms Inspired by Kinetogami , 2012 .

[123]  H. Okuzaki,et al.  A biomorphic origami actuator fabricated by folding a conducting paper , 2008 .

[124]  Leonid Ionov,et al.  Nature‐Inspired Stimuli‐Responsive Self‐Folding Materials , 2013 .

[125]  Johannes Wallner,et al.  Interactive Design of Developable Surfaces , 2016, ACM Trans. Graph..

[126]  Paul E. I. Pounds,et al.  Paper Plane: Towards Disposable Low-Cost Folded Cellulose-Substrate UAVs , 2012, ICRA 2012.

[127]  Wei Gao,et al.  Kinetogami: A Reconfigurable, Combinatorial, and Printable Sheet Folding , 2013 .

[128]  Ryuhei Uehara,et al.  On a Stiffness Model for Origami Folding , 2015 .

[129]  John C. Bowers Skeleton Structures and Origami Design , 2015 .

[130]  Rina Tannenbaum,et al.  Capture/release ability of thermo-responsive polymer particles , 2010 .

[131]  L. Ionov,et al.  Self-folding all-polymer thermoresponsive microcapsules , 2011 .

[132]  Simon D. Guest,et al.  Origami folding: A Structural Engineering Approach , 2011 .

[133]  Y. Jung,et al.  FLUTTER SPEED ESTIMATION FOR FOLDING WING SYSTEM , 2011 .

[134]  Larry L. Howell,et al.  From Crease Pattern to Product: Considerations to Engineering Origami-Adapted Designs , 2014 .

[135]  Hye Rin Kwag,et al.  Self-Folding Thermo-Magnetically Responsive Soft Microgrippers , 2015, ACS applied materials & interfaces.

[136]  Erik D. Demaine,et al.  (Non)Existence of Pleated Folds: How Paper Folds Between Creases , 2009, Graphs Comb..

[137]  Dimitris C. Lagoudas,et al.  Origami-inspired active structures: a synthesis and review , 2014 .

[138]  Spencer P. Magleby,et al.  Accommodating Thickness in Origami-Based Deployable Arrays , 2013 .

[139]  Shenguang Ge,et al.  A three-dimensional origami-based immuno-biofuel cell for self-powered, low-cost, and sensitive point-of-care testing. , 2014, Chemical communications.

[140]  K. Kuribayashi,et al.  A novel foldable stent graft , 2004 .

[141]  Mary Frecker,et al.  Development and Validation of a Dynamic Model of Magneto-Active Elastomer Actuation of the Origami Waterbomb Base , 2015 .

[142]  W. Cheney,et al.  Numerical analysis: mathematics of scientific computing (2nd ed) , 1991 .

[143]  Dimitris C. Lagoudas,et al.  Design and Analysis of a Self-Folding SMA-SMP Composite Laminate , 2014 .

[144]  Zhonghua Xi,et al.  Folding and unfolding origami tessellation by reusing folding path , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[145]  Sebastian Heimbs,et al.  Virtual testing of sandwich core structures using dynamic finite element simulations , 2009 .

[146]  Evin Gultepe,et al.  Origami Inspired Self-assembly of Patterned and Reconfigurable Particles , 2013, Journal of visualized experiments : JoVE.

[147]  Larry L. Howell,et al.  Rigidly foldable origami gadgets and tessellations , 2015, Royal Society Open Science.

[148]  Ileana Streinu,et al.  Star-Unfolding Polygons , 2014, ADG.

[149]  Nikhil Koratkar,et al.  Folding insensitive, high energy density lithium-ion battery featuring carbon nanotube current collectors , 2015 .

[150]  Fan Liu,et al.  Soft mobile robots driven by foldable dielectric elastomer actuators , 2016 .

[151]  D. Gracias,et al.  Pick-and-place using chemically actuated microgrippers. , 2008, Journal of the American Chemical Society.

[152]  Elisabeth Smela,et al.  Design of bending multi-layer electroactive polymer actuators , 2015 .

[153]  Leonid Ionov,et al.  Shape-programmed folding of stimuli-responsive polymer bilayers. , 2012, ACS nano.

[154]  Su Jun Leow,et al.  Surface and contour-preserving origamic architecture paper pop-ups , 2014, IEEE Transactions on Visualization and Computer Graphics.

[155]  Jiayao Ma,et al.  The Origami Crash Box , 2011 .

[156]  Daniel M. Aukes,et al.  Self-folding origami: shape memory composites activated by uniform heating , 2014 .

[157]  Darren J. Hartl,et al.  Design and Optimization of a Shape Memory Alloy-Based Self-Folding Sheet , 2013 .

[158]  E. Makino,et al.  Thin Film Shape Memory Alloy Microactuators , 2001 .

[159]  Thomas C. Hull,et al.  Modelling the folding of paper into three dimensions using affine transformations , 2002 .

[160]  Tomohiro Tachi,et al.  Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials , 2015, Proceedings of the National Academy of Sciences.

[161]  Mary Frecker,et al.  Trade Space Exploration of Magnetically Actuated Origami Mechanisms , 2016 .

[162]  Yuh-Chung Hu,et al.  Review on the Modeling of Electrostatic MEMS , 2010, Sensors.

[163]  Z. Suo Theory of dielectric elastomers , 2010 .

[164]  Seung-Hyun Yoon,et al.  Constructing developable surfaces by wrapping cones and cylinders , 2015, Comput. Aided Des..

[165]  Jiayao Ma,et al.  A Novel Origami Crash Box With Varying Profiles , 2013 .

[166]  D. Lagoudas,et al.  Introduction to Shape Memory Alloys , 2021, Advanced Topics of Thin-Walled Structures.

[167]  Robert J. Lang,et al.  Rigid origami vertices: conditions and forcing sets , 2016, J. Comput. Geom..

[168]  K. Easterling,et al.  Phase Transformations in Metals and Alloys , 2021 .

[169]  Ralf Sturm,et al.  Virtual Design Method for Controlled Failure in Foldcore Sandwich Panels , 2015, Applied Composite Materials.

[170]  Erik D. Demaine,et al.  Characterization of Curved Creases and Rulings: Design and Analysis of Lens Tessellations , 2015, ArXiv.

[171]  D. Lagoudas,et al.  Constitutive modeling and structural analysis considering simultaneous phase transformation and plastic yield in shape memory alloys , 2009 .

[172]  J. Silverberg,et al.  Lattice mechanics of origami tessellations. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[173]  A. Pressley Elementary Differential Geometry , 2000 .

[174]  Scott A. Mathews,et al.  Laser origami: a new technique for assembling 3D microstructures , 2012, Other Conferences.

[175]  Tomohiro Tachi,et al.  Freeform Variations of Origami , 2010 .

[176]  I. Lundström,et al.  Microrobots for micrometer-size objects in aqueous media: potential tools for single-cell manipulation. , 2000, Science.

[177]  Nancy M. Amato,et al.  A motion planning approach to folding: from paper craft to protein folding , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[178]  Jie Qi,et al.  Animating paper using shape memory alloys , 2012, CHI.

[179]  Yonggang Huang,et al.  Origami MEMS and NEMS , 2016 .

[180]  James G. Boyd,et al.  Effective properties of three-phase electro-magneto-elastic composites , 2005 .

[181]  Alejandro R. Diaz,et al.  Origami Design by Topology Optimization , 2013 .

[182]  Erik D. Demaine,et al.  Folding Flat Crease Patterns with Thick Materials , 2015, ArXiv.

[183]  Robert J. Lang,et al.  Towards developing product applications of thick origami using the offset panel technique , 2016 .

[184]  Joseph M. Gattas,et al.  Quasi-static crushing of eggbox, cube, and modified cube foldcore sandwich structures , 2015 .

[185]  S. Saravanan,et al.  Array of micromachined components fabricated using "micro-origami" method , 2002, 2002 International Microprocesses and Nanotechnology Conference, 2002. Digest of Papers..

[186]  Evin Gultepe,et al.  Self-folding devices and materials for biomedical applications. , 2012, Trends in biotechnology.

[187]  Dimitris C. Lagoudas,et al.  Analytical investigation of structurally stable configurations in shape memory alloy-actuated plates , 2015 .

[188]  Chia-Hung Yeh,et al.  Content-aware Image Retargeting for Image Display on Foldable Mobile Devices , 2015, FNC/MobiSPC.

[189]  Dragan Damjanovic,et al.  Electrostrictive and Piezoelectric Materials for Actuator Applications , 1992 .

[190]  Meie Li,et al.  Modeling programmable deformation of self-folding all-polymer structures with temperature-sensitive hydrogels , 2013 .

[191]  Jiayao Ma,et al.  Energy Absorption of Thin-Walled Square Tubes With a Prefolded Origami Pattern—Part I: Geometry and Numerical Simulation , 2014 .

[192]  L. Ionov,et al.  Temperature controlled encapsulation and release using partially biodegradable thermo-magneto-sensitive self-rolling tubes , 2010 .

[193]  Tomohiro Tachi,et al.  3D Origami Design based on Tucking Molecule , 2008 .

[194]  Brian Sanders,et al.  Vibration and Flutter Characteristics of a Folding Wing , 2005 .

[195]  Russell W. Mailen,et al.  Simple geometric model to describe self-folding of polymer sheets. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[196]  Willi-Hans Steeb,et al.  Matrix Calculus and the Kronecker Product with Applications and C++ Programs , 1997 .

[197]  R. Wood,et al.  Self-folding miniature elastic electric devices , 2014 .

[198]  Arthur Lebée,et al.  From Folds to Structures, a Review , 2015 .

[199]  Ashley P. Thrall,et al.  Bascule shelters: A novel erection strategy for origami-inspired deployable structures , 2014 .

[200]  Tomohiro Tachi,et al.  Rigid folding of periodic origami tessellations , 2015 .

[201]  E. Smela,et al.  Controlled Folding of Micrometer-Size Structures , 1995, Science.

[202]  Richard L. Baron,et al.  Twenty-meter space telescope based on diffractive Fresnel lens , 2004, SPIE Optics + Photonics.

[203]  Leonid Ionov,et al.  Fully biodegradable self-rolled polymer tubes: a candidate for tissue engineering scaffolds. , 2011, Biomacromolecules.

[204]  A. Thesis,et al.  EXPERIMENTAL CHARACTERIZATION AND VALIDATED MULTI-FIDELITY ANALYSIS OF RECONFIGURABLE CURVATURE IN SHAPE MEMORY ALLOY COMPOSITE SHEETS , 2015 .

[205]  Daniel M. Aukes,et al.  Self-folding with shape memory composites at the millimeter scale , 2015 .

[206]  Isaac L. Delimont,et al.  Material selection for elastic energy absorption in origami-inspired compliant corrugations , 2014 .

[207]  Larry L. Howell,et al.  Creating Rigid Foldability to Enable Mobility of Origami-Inspired Mechanisms , 2016 .

[208]  Ashley P. Thrall,et al.  Balancing energy efficiency and structural performance through multi-objective shape optimization: Case study of a rapidly deployable origami-inspired shelter , 2014 .

[209]  E. Carrera Theories and finite elements for multilayered, anisotropic, composite plates and shells , 2002 .

[210]  R. Lang Origami Design Secrets: Mathematical Methods for an Ancient Art , 2003 .

[211]  K. Ishida,et al.  Magnetic-field-induced shape recovery by reverse phase transformation , 2006, Nature.

[212]  Hye Rin Kwag,et al.  Patterned soft-micropolyhedra by self-folding and molding , 2016, 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS).

[213]  Marko Budimir,et al.  Piezoelectric anisotropy and free energy instability in classic perovskites , 2006 .

[214]  L. G. Machado,et al.  Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys , 2012 .

[215]  J. Reddy An Introduction to Nonlinear Finite Element Analysis: with applications to heat transfer, fluid mechanics, and solid mechanics , 2015 .

[216]  Robert J. Wood,et al.  An end-to-end approach to making self-folded 3D surface shapes by uniform heating , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[217]  Naohiko Watanabe,et al.  The Method for Judging Rigid Foldability , 2009 .

[218]  Larry L. Howell,et al.  A position analysis of coupled spherical mechanisms found in action origami , 2014 .

[219]  Marc Grzeschik,et al.  Performance of Foldcores Mechanical Properties and Testing , 2013 .

[220]  Takashi Maeno,et al.  Development of a Miniature Robot Finger with a Variable Stiffness Mechanism using Shape Memory Alloy , 2004 .

[221]  Lena Osterhagen Problems And Solutions In Introductory And Advanced Matrix Calculus , 2016 .

[222]  Larry L. Howell,et al.  Force–Deflection Modeling for Generalized Origami Waterbomb-Base Mechanisms , 2015 .

[223]  S. Timoshenko,et al.  Analysis of Bi-Metal Thermostats , 1925 .

[224]  M. Dickey,et al.  Self-folding of polymer sheets using local light absorption , 2012 .

[225]  Xiaoping Zhou,et al.  Origami mechanical metamaterials based on the Miura-derivative fold patterns , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[226]  Jian S. Dai,et al.  Origami-inspired integrated planar-spherical overconstrained mechanisms , 2014 .

[227]  Marc Behl,et al.  Shape-Memory Polymers and Shape-Changing Polymers , 2009 .

[228]  Larry L. Howell,et al.  Evaluating Compliant Hinge Geometries for Origami-Inspired Mechanisms , 2014 .

[229]  Integer Programming Models for Flat Origami , 2009 .

[230]  Gerhard A. Holzapfel,et al.  Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science , 2000 .

[231]  S D Guest,et al.  Deployable membranes designed from folding tree leaves , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[232]  Zhong You,et al.  Modelling rigid origami with quaternions and dual quaternions , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[233]  Robert J. Lang Computational origami: from flapping birds to space telescopes , 2009, SCG '09.

[234]  Yi Min Xie,et al.  Energy absorption of thin-walled tubes with pre-folded origami patterns: Numerical simulation and experimental verification , 2016 .

[235]  W. Liu,et al.  Optimal design of flat patterns for 3D folded structures by unfolding with topological validation , 2007, Comput. Aided Des..

[236]  Thomas C. Hull,et al.  Using origami design principles to fold reprogrammable mechanical metamaterials , 2014, Science.

[237]  Hoon Cheol Park,et al.  Design and demonstration of insect mimicking foldable artificial wing using four-bar linkage systems , 2014 .

[238]  Leonid Ionov,et al.  Soft microorigami: self-folding polymer films , 2011 .

[239]  Hiromi Yasuda,et al.  Multitransformable Leaf-Out Origami With Bistable Behavior , 2016 .

[240]  Larry L. Howell,et al.  Single Degree-of-Freedom Rigidly Foldable Cut Origami Flashers , 2015 .

[241]  David Pohl,et al.  Engineered spacecraft deployables influenced by nature , 2009, Optical Engineering + Applications.

[242]  Shi-Min Hu,et al.  A geometric study of v-style pop-ups: theories and algorithms , 2011, SIGGRAPH 2011.

[243]  Sergio Pellegrino,et al.  Origami Sunshield Concepts for Space Telescopes , 2013 .

[244]  Ronald S. Fearing,et al.  Fast scale prototyping for folded millirobots , 2008, ICRA.

[245]  Nicolae Lobontiu,et al.  Compliant Mechanisms: Design of Flexure Hinges , 2002 .

[246]  Alastair Johnson Novel hybrid structural core sandwich materials for aircraft applications , 2008 .

[247]  Hao Yan,et al.  DNA origami , 2021, Nature Reviews Methods Primers.

[248]  Dimitris C. Lagoudas,et al.  Modeling of the Thermomechanical Response of Active Laminates with SMA Strips Using the Layerwise Finite Element Method , 1997 .

[249]  Bin Chen,et al.  Self-Folding of Thick Polymer Sheets Using Gradients of Heat , 2016 .

[250]  Dimitris C. Lagoudas,et al.  Kinematics of Origami Structures with Smooth Folds , 2016 .

[251]  Tomohiro Tachi,et al.  Rigid-Foldable Thick Origami , 2010 .

[252]  S. Fischer,et al.  Realistic Fe simulation of foldcore sandwich structures , 2015, International Journal of Mechanical and Materials Engineering.

[253]  Yao Wang,et al.  Quilt pattern inspired engineering: Efficient manufacturing of shelter topologies , 2016 .

[254]  Thomas Tørring,et al.  DNA origami: a quantum leap for self-assembly of complex structures. , 2011, Chemical Society reviews.

[255]  Justin Solomon,et al.  Numerical Algorithms - Methods for Computer Vision, Machine Learning, and Graphics , 2015 .

[256]  D. Gracias,et al.  Microassembly based on hands free origami with bidirectional curvature. , 2009, Applied physics letters.

[257]  Chris Henry,et al.  Variable stiffness materials for reconfigurable surface applications , 2005, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[258]  Charlie C. L. Wang,et al.  Nonsmooth Developable Geometry for Interactively Animating Paper Crumpling , 2015, ACM Trans. Graph..

[259]  Jian S. Dai,et al.  Four Motion Branches of an Origami Based Eight Bar Spatial Mechanism , 2013 .

[260]  Michael J. Escuti,et al.  Three-dimensional folding of pre-strained polymer sheets via absorption of laser light , 2014 .

[261]  A. M. Shkel,et al.  Miniature origami-like folded MEMS TIMU , 2015, 2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS).

[262]  Paris von Lockette,et al.  Fabrication and Performance of Magneto-Active Elastomer Composite Structures , 2014 .

[263]  Zhong You,et al.  Quasi-static axial crushing of thin-walled tubes with a kite-shape rigid origami pattern: Numerical simulation , 2016 .

[264]  Tetsuo Ida,et al.  Origami axioms and circle extension , 2011, SAC '11.

[265]  Maenghyo Cho,et al.  Sequential Folding using Light-activated Polystyrene Sheet , 2015, Scientific Reports.

[266]  Tetsuo Ida,et al.  Logical and algebraic view of Huzita's origami axioms with applications to computational origami , 2007, SAC '07.

[267]  Hai-Jun Su,et al.  Programmable motion of DNA origami mechanisms , 2015, Proceedings of the National Academy of Sciences.

[268]  Darren J. Hartl,et al.  Reinforcement Learning for Control of a Shape Memory Alloy Based Self-Folding Sheet , 2015 .

[269]  T. Ghosh,et al.  Dielectric elastomers as next-generation polymeric actuators. , 2007, Soft matter.

[270]  E. Rothwell,et al.  An origami tunable metamaterial , 2012 .

[271]  Shigeki Nashima,et al.  Characterization of GaAs-based micro-origami mirrors by optical actuation , 2004 .

[272]  Manos M. Tentzeris,et al.  An Origami Inspired Reconfigurable Spiral Antenna , 2014 .

[273]  Jonathan Rossiter,et al.  Kirigami design and fabrication for biomimetic robotics , 2014, Smart Structures.

[274]  Jamie Kyujin Paik,et al.  The design and control of the multi-modal locomotion origami robot, Tribot , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[275]  R. Fernandes,et al.  Self-folding polymeric containers for encapsulation and delivery of drugs. , 2012, Advanced drug delivery reviews.

[276]  Paris von Lockette,et al.  Folding Actuation and Locomotion of Novel Magneto-Active Elastomer (MAE) Composites , 2013 .

[277]  Spencer P. Magleby,et al.  An Origami-Inspired Self-Deployable Array , 2013 .

[278]  J. A. Logan,et al.  Electrochemistry of conducting polypyrrole films , 1981 .

[279]  Dimitris C. Lagoudas,et al.  Advanced methods for the analysis, design, and optimization of SMA-based aerostructures , 2011 .

[280]  Biruta Kresling,et al.  Origami-structures in nature: lessons in designing “smart” materials , 2012 .

[281]  Markus Löchtefeld,et al.  Morphees: toward high "shape resolution" in self-actuated flexible mobile devices , 2013, CHI.

[282]  Kyu-Jin Cho,et al.  Design of deformable-wheeled robot based on origami structure with shape memory alloy coil spring , 2013, 2013 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI).

[283]  Valeriy Luchnikov,et al.  Self-rolled polymer tubes: novel tools for microfluidics, microbiology, and drug-delivery systems. , 2011, Macromolecular rapid communications.

[284]  Yunhyeong Kim,et al.  Learning to segment and unfold polyhedral mesh from failures , 2016, Comput. Graph..

[285]  Darren J. Hartl,et al.  Control of a Shape Memory Alloy Based Self-Folding Sheet , 2014 .

[286]  Jian S. Dai,et al.  From Origami to a New Class of Centralized 3-DOF Parallel Mechanisms , 2007 .

[287]  J. M. Bush,et al.  Capillary origami in nature , 2009 .

[288]  Jian S. Dai,et al.  Kinematic Analysis and Stiffness Validation of Origami Cartons , 2013 .

[289]  Theodoros T Machairas,et al.  A coupled thermomechanical beam finite element for the simulation of shape memory alloy actuators , 2014 .

[290]  Robert J. Bernhard,et al.  Dynamic modelling of a shape memory alloy adaptive tuned vibration absorber , 2005 .

[291]  Nancy M. Amato,et al.  Using Motion Planning to Map Protein Folding Landscapes and Analyze Folding Kinetics of Known Native Structures , 2003, J. Comput. Biol..

[292]  Gregory W. Reich,et al.  Origami Actuator Design and Networking Through Crease Topology Optimization , 2015 .

[293]  Z. You Folding structures out of flat materials , 2014, Science.

[294]  C. M. Wayman,et al.  Shape-Memory Materials , 2018 .

[295]  Jian S. Dai,et al.  An Extensible Continuum Robot With Integrated Origami Parallel Modules , 2016 .

[296]  Stefan Seelecke,et al.  BATMAV: a biologically inspired micro air vehicle for flapping flight: kinematic modeling , 2008, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[297]  Patrick Baudisch,et al.  Laser origami: laser-cutting 3D objects , 2014, INTR.

[298]  S. Pellegrino,et al.  Matrix analysis of statically and kinematically indeterminate frameworks , 1986 .

[299]  R. J. Wood,et al.  An Origami-Inspired Approach to Worm Robots , 2013, IEEE/ASME Transactions on Mechatronics.

[300]  Joseph S. B. Mitchell,et al.  Folding flat silhouettes and wrapping polyhedral packages: new results in computational origami , 1999, SCG '99.

[301]  Rubik B. Sheth,et al.  A Morphing Radiator for High-Turndown Thermal Control of Crewed Space Exploration Vehicles , 2015 .

[302]  Tomohiro Tachi Interactive Form-Finding of Elastic Origami , 2013 .

[303]  Darren J. Hartl,et al.  Design of a Massively Reconfigurable Origami Space Structure Incorporating Shape Memory Alloys , 2012 .

[304]  Hongyan He,et al.  An oral delivery device based on self-folding hydrogels. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[305]  Valeriy Luchnikov,et al.  Formation of self-rolled polymer microtubes studied by combinatorial approach , 2008 .

[306]  L. Ionov,et al.  Reversibly Cross-Linkable Thermoresponsive Self-Folding Hydrogel Films. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[307]  E. Carrera Theories and Finite Elements for Multilayered Plates and Shells:A Unified compact formulation with numerical assessment and benchmarking , 2003 .

[308]  Stephan Freytag An Introduction To Splines For Use In Computer Graphics And Geometric Modeling , 2016 .

[309]  Robert G. Loewy,et al.  REVIEW ARTICLE: Recent developments in smart structures with aeronautical applications , 1997 .

[310]  Kening Zhu,et al.  Snap-n-fold: origami pattern generation based real-life object structure , 2012, CHI EA '12.

[311]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[312]  Valeriy Luchnikov,et al.  Toroidal hollow-core microcavities produced by self-rolling of strained polymer bilayer films , 2008, 2301.06922.

[313]  Jeong Woo Han,et al.  All-solid-state, origami-type foldable supercapacitor chips with integrated series circuit analogues , 2014 .

[314]  G H Paulino,et al.  Origami tubes with reconfigurable polygonal cross-sections , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[315]  Ying Liu,et al.  Modelling of shape memory polymer sheets that self-fold in response to localized heating. , 2015, Soft matter.

[316]  Yan Chen,et al.  Axial crushing of thin-walled structures with origami patterns , 2012 .

[317]  Peter Fratzl,et al.  Origami-like unfolding of hydro-actuated ice plant seed capsules. , 2011, Nature communications.

[318]  Mark Yim,et al.  Dielectric elastomer bender actuator applied to modular robotics , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[319]  Dimitris C. Lagoudas,et al.  Experimentally validated numerical analysis of aerostructures incorporating shape memory alloys , 2008, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[320]  Joseph M. Gattas,et al.  Miura-Base Rigid Origami: Parametrizations of Curved-Crease Geometries , 2014 .

[321]  A. Lendlein,et al.  Shape-memory polymers. , 2002, Angewandte Chemie.

[322]  Francis Lazarus Optimal Polygonal Schema on an Orientable Surface , .

[323]  Dimitris C. Lagoudas,et al.  Magnetic field-induced martensitic variant reorientation in magnetic shape memory alloys , 2005 .

[324]  Thomas C. Hull The Combinatorics of Flat Folds: a Survey , 2013 .

[325]  Dimitris C. Lagoudas,et al.  Use of a Ni60Ti shape memory alloy for active jet engine chevron application: II. Experimentally validated numerical analysis , 2009 .

[326]  Ergun Akleman,et al.  Construction with physical version of quad-edge data structures , 2016, Comput. Graph..

[327]  P. George,et al.  Mesh Generation: Application to Finite Elements , 2007 .

[328]  Ergun Akleman,et al.  Insight for Practical Subdivision Modeling with Discrete Gauss-Bonnet Theorem , 2006, GMP.

[329]  P. Mather,et al.  Shape Memory Polymer Research , 2009 .

[330]  Mary Frecker,et al.  Recent Advances in Optimization of Smart Structures and Actuators , 2003 .

[331]  D. Sujan,et al.  Origami Theory and Its Applications: A Literature Review , 2013 .

[332]  George Barbastathis,et al.  Integrated Folding, Alignment, and Latching for Reconfigurable Origami Microelectromechanical Systems , 2015, Journal of Microelectromechanical Systems.

[333]  Julian F. V. Vincent,et al.  The geometry of unfolding tree leaves , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[334]  Kazuko Fuchi,et al.  Topology optimization for the design of folding liquid crystal elastomer actuators. , 2015, Soft matter.

[335]  Leonid Ionov,et al.  Anisotropic Liquid Microcapsules from Biomimetic Self-Folding Polymer Films. , 2015, ACS applied materials & interfaces.

[336]  Larry L. Howell,et al.  Thick Rigidly Foldable Structures Realized by an Offset Panel Technique , 2015 .

[337]  J. Reddy Mechanics of laminated composite plates : theory and analysis , 1997 .

[338]  Victor Ya. Prinz,et al.  Application of semiconductor micro- and nanotubes in biology , 2003 .

[339]  Marshall W. Bern,et al.  The complexity of flat origami , 1996, SODA '96.

[341]  Darren J. Hartl,et al.  POP-OP: A Shape Memory-Based Morphing Wall , 2013 .

[342]  J. N. Reddy,et al.  Energy principles and variational methods in applied mechanics , 2002 .

[343]  Ergun Akleman,et al.  Connectivity of Shape Memory Alloy-based Self-Folding Structures , 2014 .

[344]  Erik D. Demaine,et al.  Folding and Unfolding Linkages, Paper, and Polyhedra , 2000, JCDCG.

[345]  Hani E. Naguib,et al.  Characterization of origami shape memory metamaterials (SMMM) made of bio-polymer blends , 2016, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[346]  Roel Vertegaal,et al.  MorePhone: a study of actuated shape deformations for flexible thin-film smartphone notifications , 2013, CHI.

[347]  Haluk E. Karaca,et al.  Energy harvesting using martensite variant reorientation mechanism in a NiMnGa magnetic shape memory alloy , 2007 .

[348]  R. Wood,et al.  Robotic origamis : self-morphing modular robots , 2011 .

[349]  Masahiko Inami,et al.  Animated paper: A toolkit for building moving toys , 2010, CIE.

[350]  Darren J. Hartl,et al.  Design and numerical analysis of an SMA mesh-based self-folding sheet , 2013 .

[351]  Robert J. Lang Origami: Complexity in Creases (Again) , 2004 .

[352]  Robert J. Wood,et al.  Robot self-assembly by folding: A printed inchworm robot , 2013, 2013 IEEE International Conference on Robotics and Automation.

[353]  Liyong Tong,et al.  Modeling for the electro-magneto-thermo-elastic properties of piezoelectric-magnetic fiber reinforced composites , 2002 .

[354]  Jian S. Dai,et al.  Kinematic and Stiffness Analysis of an Origami-Type Carton , 2013 .

[355]  Thomas C. Hull On the Mathematics of Flat Origamis , 1994 .

[356]  Candace K. Chan,et al.  Origami lithium-ion batteries , 2014, Nature Communications.

[357]  Martin Leary,et al.  A review of shape memory alloy research, applications and opportunities , 2014 .

[358]  Larry L. Howell,et al.  An Approach for Understanding Action Origami as Kinematic Mechanisms , 2013 .

[359]  Ashley P. Thrall,et al.  Honeycomb core sandwich panels for origami-inspired deployable shelters: Multi-objective optimization for minimum weight and maximum energy efficiency , 2014 .

[360]  Jiayao Ma,et al.  Energy Absorption of Thin-Walled Beams with a Pre-Folded Origami Pattern , 2013 .

[361]  M. A. Northrup,et al.  A Practical Microgripper By Fine Alignment, Eutectic Bonding And Sma Actuation , 1995, Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS '95.

[362]  Hongyan He,et al.  Design of a novel hydrogel-based intelligent system for controlled drug release. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[363]  Bill Goodwine,et al.  A review of origami applications in mechanical engineering , 2016 .

[364]  Y. Tai,et al.  A MEMS intraocular origami coil , 2011, 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference.

[365]  Mark Schenk,et al.  Geometry of Miura-folded metamaterials , 2013, Proceedings of the National Academy of Sciences.

[366]  John M. Sullivan,et al.  Curvatures of Smooth and Discrete Surfaces , 2007, 0710.4497.

[367]  Mary Frecker,et al.  Multi-Field Responsive Origami Structures: Preliminary Modeling and Experiments , 2013 .

[368]  Ergun Akleman,et al.  Design Tools for Patterned Self-Folding Reconfigurable Structures Based on Programmable Active Laminates , 2016 .

[369]  Dimitris C. Lagoudas,et al.  Folding patterns and shape optimization using SMA-based self-folding laminates , 2014, Smart Structures.

[370]  Hwan Chul Jeon,et al.  Controlled origami folding of hydrogel bilayers with sustained reversibility for robust microcarriers. , 2012, Angewandte Chemie.

[371]  Darren J. Hartl,et al.  Computational Design of a Reconfigurable Origami Space Structure Incorporating Shape Memory Alloy Thin Films , 2012 .

[372]  William S. Slaughter The Linearized Theory of Elasticity , 2001 .

[373]  James G. Boyd,et al.  Modeling and development of a twisting wing using inductively heated shape memory alloy actuators , 2015, Smart Structures.

[374]  Shuji Hashimoto,et al.  Origami Robot: A Self-Folding Paper Robot With an Electrothermal Actuator Created by Printing , 2016, IEEE/ASME Transactions on Mechatronics.

[375]  Wei Li,et al.  Designing Optimal Origami Structures by Computational Evolutionary Embryogeny , 2014, J. Comput. Inf. Sci. Eng..

[376]  Jie Qi,et al.  Electronic popables: exploring paper-based computing through an interactive pop-up book , 2010, TEI '10.

[377]  Michael D. Dickey,et al.  Self-folding of polymer sheets using microwaves and graphene ink , 2015 .

[378]  Quan Li,et al.  Intelligent stimuli-responsive materials : from well-defined nanostructures to applications , 2013 .

[379]  L G Machado,et al.  Medical applications of shape memory alloys. , 2003, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[380]  Toshikazu Kawasaki On relation between mountain-creases and valley -creases of a flat origami , 1990 .

[381]  Roland Glowinski,et al.  An introduction to the mathematical theory of finite elements , 1976 .

[382]  Thomas C. Hull Configuration Spaces for Flat Vertex Folds , 2009 .

[383]  Hongen Tu,et al.  Origami-enabled deformable silicon solar cells , 2014 .

[384]  John Montroll,et al.  0 The Tree Method of Origami Design , .

[385]  U. Schubert,et al.  Shape memory polymers: Past, present and future developments , 2015 .

[386]  M. Jamal,et al.  Enzymatically triggered actuation of miniaturized tools. , 2010, Journal of the American Chemical Society.

[387]  Tomohiro Tachi Geometric Considerations for the Design of Rigid Origami Structures , 2010 .

[388]  Joan Lasenby,et al.  The kinematics of large rotations using Clifford algebra , 2000 .

[389]  Alastair Johnson,et al.  Experimental and Numerical Analysis of Composite Folded Sandwich Core Structures Under Compression , 2007 .

[390]  Kyu-Jin Cho,et al.  The Deformable Wheel Robot Using Magic-Ball Origami Structure , 2013 .

[391]  E. Hawkesa,et al.  Programmable matter by folding , 2010 .

[392]  C. P. Quagli,et al.  Parametric modelling of an air-liftable origami-inspired deployable shelter with a novel erection strategy , 2014 .

[393]  Jian S. Dai,et al.  Geometry and kinematic analysis of an origami-evolved mechanism based on artmimetics , 2009, 2009 ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots.

[394]  Larry L. Howell,et al.  Kinematic Representations of Pop-Up Paper Mechanisms , 2007 .

[395]  Thomas C. Hull Project Origami: Activities for Exploring Mathematics , 2006 .

[396]  Dimitris C. Lagoudas,et al.  Design optimization and uncertainty analysis of SMA morphing structures , 2012 .

[397]  Stavros V. Georgakopoulos,et al.  A novel reconfigurable origami accordion antenna , 2014, 2014 IEEE MTT-S International Microwave Symposium (IMS2014).

[398]  Zhe Feng,et al.  A Short Review on Mesh Simplification , 2014 .

[399]  Donghwa Jeong,et al.  OrigamiBot-I: A thread-actuated origami robot for manipulation and locomotion , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[400]  G. K. Ananthasuresh,et al.  Designing compliant mechanisms , 1995 .

[401]  André R Studart,et al.  Bioinspired materials that self-shape through programmed microstructures. , 2014, Soft matter.

[402]  Yoji Okabe,et al.  New Deployable Structures Based on an Elastic Origami Model , 2015 .

[403]  Tomohiro Tachi,et al.  Designing Freeform Origami Tessellations by Generalizing Resch's Patterns , 2013 .

[404]  Ichiro Hagiwara,et al.  Application of Conformal Maps to Origami-Based Structures: New Method to Design Deployable Circular Membranes , 2013 .

[405]  Dominique Tan,et al.  Projectagami: A Foldable Mobile Device with Shape Interactive Applications , 2015, CHI Extended Abstracts.

[406]  H. Meng,et al.  A review of stimuli-responsive shape memory polymer composites , 2013 .

[407]  Anne Verroust-Blondet,et al.  Computing a canonical polygonal schema of an orientable triangulated surface , 2001, SCG '01.

[408]  Dirk J. Broer,et al.  Accordion‐like Actuators of Multiple 3D Patterned Liquid Crystal Polymer Films , 2014 .

[409]  Dimitris C. Lagoudas,et al.  Modeling of Shape Memory Alloy Wire Meshes Using Effective Lamina Properties for Improved Analysis Efficiency , 2013 .

[410]  Xuanhe Zhao,et al.  Tunable lotus-leaf and rose-petal effects via graphene paper origami , 2015 .

[411]  Shigeki Yokoi,et al.  An Origami Playing Simulator in the Virtual Space , 1996, Comput. Animat. Virtual Worlds.

[412]  Robert J. Lang,et al.  A computational algorithm for origami design , 1996, SCG '96.

[413]  Mehdi Farshad,et al.  Magnetoactive elastomer composites , 2004 .

[414]  Brian A. Barsky,et al.  Geometric Continuity of Parametric Curves , 1984 .

[415]  Hsu-Chun Yen,et al.  Optimized Topological Surgery for Unfolding 3D Meshes , 2011, Comput. Graph. Forum.

[416]  Valeriy Luchnikov,et al.  Fabrication of metallic microtubes using self-rolled polymer tubes as templates. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[417]  Grant P. Steven,et al.  A Review on the Modelling of Piezoelectric Sensors and Actuators Incorporated in Intelligent Structures , 1998 .

[418]  J. Reddy A Simple Higher-Order Theory for Laminated Composite Plates , 1984 .

[419]  Tomohiro Tachi,et al.  FREEFORM ORIGAMI TESSELLATIONS BY GENERALIZING RESCH'S PATTERNS , 2013 .

[420]  Erik D. Demaine,et al.  Planning to fold multiple objects from a single self-folding sheet , 2011, Robotica.