Principled Parallel Mean-Field Inference for Discrete Random Fields

Mean-field variational inference is one of the most popular approaches to inference in discrete random fields. Standard mean-field optimization is based on coordinate descent and in many situations can be impractical. Thus, in practice, various parallel techniques are used, which either rely on ad hoc smoothing with heuristically set parameters, or put strong constraints on the type of models. In this paper, we propose a novel proximal gradient-based approach to optimizing the variational objective. It is naturally parallelizable and easy to implement. We prove its convergence, and demonstrate that, in practice, it yields faster convergence and often finds better optima than more traditional mean-field optimization techniques. Moreover, our method is less sensitive to the choice of parameters.

[1]  Iasonas Kokkinos,et al.  Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs , 2014, ICLR.

[2]  Lena Gorelick,et al.  Submodularization for Binary Pairwise Energies , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[3]  Sebastian Nowozin,et al.  Decision tree fields , 2011, 2011 International Conference on Computer Vision.

[4]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[5]  Vladlen Koltun,et al.  Parameter Learning and Convergent Inference for Dense Random Fields , 2013, ICML.

[6]  Tiziana D'Orazio,et al.  A Semi-automatic System for Ground Truth Generation of Soccer Video Sequences , 2009, 2009 Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance.

[7]  Tom Minka,et al.  Expectation Propagation for approximate Bayesian inference , 2001, UAI.

[8]  Chong Wang,et al.  Stochastic variational inference , 2012, J. Mach. Learn. Res..

[9]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[10]  Yoram Singer,et al.  Adaptive Subgradient Methods for Online Learning and Stochastic Optimization , 2011, J. Mach. Learn. Res..

[11]  Jan Kautz,et al.  Fully-Connected CRFs with Non-Parametric Pairwise Potential , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[12]  Rainer Stiefelhagen,et al.  Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics , 2008, EURASIP J. Image Video Process..

[13]  Sebastian Nowozin,et al.  A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems , 2014, International Journal of Computer Vision.

[14]  Takayuki Okatani,et al.  Application of the mean field methods to MRF optimization in computer vision , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[15]  Boris Polyak Some methods of speeding up the convergence of iteration methods , 1964 .

[16]  Pascal Fua,et al.  Multi-Commodity Network Flow for Tracking Multiple People , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Michael I. Jordan,et al.  Loopy Belief Propagation for Approximate Inference: An Empirical Study , 1999, UAI.

[18]  Vladimir Kolmogorov,et al.  A New Look at Reweighted Message Passing , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Pascal Fua,et al.  Kullback-Leibler Proximal Variational Inference , 2015, NIPS.

[20]  Ambuj Tewari,et al.  Composite objective mirror descent , 2010, COLT 2010.

[21]  VekslerOlga,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001 .

[22]  Vibhav Vineet,et al.  Filter-Based Mean-Field Inference for Random Fields with Higher-Order Terms and Product Label-Spaces , 2012, International Journal of Computer Vision.

[23]  Charles M. Bishop,et al.  Variational Message Passing , 2005, J. Mach. Learn. Res..

[24]  Pascal Fua,et al.  Probability occupancy maps for occluded depth images , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[25]  Shun-ichi Amari,et al.  Natural Gradient Works Efficiently in Learning , 1998, Neural Computation.

[26]  Jianguo Zhang,et al.  The PASCAL Visual Object Classes Challenge , 2006 .

[27]  Michael I. Jordan,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..

[28]  Vibhav Vineet,et al.  Conditional Random Fields as Recurrent Neural Networks , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[29]  Christopher D. Manning,et al.  Simple MAP Inference via Low-Rank Relaxations , 2014, NIPS.

[30]  Marc Teboulle,et al.  Entropic Proximal Mappings with Applications to Nonlinear Programming , 1992, Math. Oper. Res..

[31]  Vladlen Koltun,et al.  Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials , 2011, NIPS.

[32]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[33]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[34]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[35]  ZissermanAndrew,et al.  The Pascal Visual Object Classes Challenge , 2015 .

[36]  FuaPascal,et al.  Multicamera People Tracking with a Probabilistic Occupancy Map , 2008 .

[37]  Vincent Lepetit,et al.  Real-time landing place assessment in man-made environments , 2013, Machine Vision and Applications.