Selective darkening of degenerate transitions for implementing quantum controlled-NOT gates

We present a theoretical analysis of the selective darkening method for implementing quantum controlled-NOT (CNOT) gates. This method, which we have recently proposed and demonstrated, consists of driving two transversely coupled quantum bits (qubits) with a driving field that is resonant with one of the two qubits. For specific relative amplitudes and phases of the driving field felt by the two qubits, one of the two transitions in the degenerate pair is darkened or, in other words, becomes forbidden by effective selection rules. In these driving conditions, the evolution of the two-qubit state realizes a CNOT gate. The gate speed is found to be limited only by the coupling energy J, which is the fundamental speed limit for any entangling gate. Numerical simulations show that at gate speeds corresponding to 0.48J and 0.07J, the gate fidelity is 99% and 99.99%, respectively, and increases further for lower gate speeds. In addition, the effect of higher-lying energy levels and weak anharmonicity is studied, as well as the scalability of the method to systems of multiple qubits. We conclude that in all these respects this method is competitive with existing schemes for creating entanglement, with the added advantages of being applicable for qubits operating at fixed frequencies (either by design or for the exploitation of coherence sweet-spots) and having the simplicity of microwave-only operation.

[1]  L. Ioffe,et al.  Physical implementation of protected qubits , 2012, Reports on progress in physics. Physical Society.

[2]  Franco Nori,et al.  Speed limits for quantum gates in multiqubit systems , 2012, 1202.5872.

[3]  W. Marsden I and J , 2012 .

[4]  J. Gambetta,et al.  Coherent control of a superconducting qubit with dynamically tunable qubit-cavity coupling , 2011, 1108.2705.

[5]  S. Kais,et al.  Entanglement of polar symmetric top molecules as candidate qubits. , 2011, The Journal of chemical physics.

[6]  S. Filipp,et al.  Preparation of subradiant states using local qubit control in circuit QED , 2011, 1107.2078.

[7]  F. Nori,et al.  Atomic physics and quantum optics using superconducting circuits , 2011, Nature.

[8]  Blake R. Johnson,et al.  Simple all-microwave entangling gate for fixed-frequency superconducting qubits. , 2011, Physical review letters.

[9]  J M Gambetta,et al.  Tunable coupling in circuit quantum electrodynamics using a superconducting charge qubit with a V-shaped energy level diagram. , 2011, Physical review letters.

[10]  Alexandre Blais,et al.  Superconducting qubit with Purcell protection and tunable coupling. , 2010, Physical review letters.

[11]  F. Nori,et al.  Natural and artificial atoms for quantum computation , 2010, 1002.1871.

[12]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[13]  A. Lupascu,et al.  Selective darkening of degenerate transitions demonstrated with two superconducting quantum bits , 2010, 1008.1294.

[14]  Jay M. Gambetta,et al.  Preparation and measurement of three-qubit entanglement in a superconducting circuit , 2010, Nature.

[15]  Chad Rigetti,et al.  Fully microwave-tunable universal gates in superconducting qubits with linear couplings and fixed transition frequencies , 2010 .

[16]  M. Weides,et al.  Generation of three-qubit entangled states using superconducting phase qubits , 2010, Nature.

[17]  Austin G. Fowler,et al.  Tunable coupling between three qubits as a building block for a superconducting quantum computer , 2010, 1102.0307.

[18]  F K Wilhelm,et al.  Efficient creation of multipartite entanglement in flux qubits , 2009, Nanotechnology.

[19]  F. Nori,et al.  Landau-Zener-Stückelberg interferometry , 2009, 0911.1917.

[20]  John M. Martinis,et al.  Quantum logic with weakly coupled qubits , 2009, 0906.5209.

[21]  A. Niskanen,et al.  Engineered selection rules for tunable coupling in a superconducting quantum circuit , 2009 .

[22]  J M Gambetta,et al.  Simple pulses for elimination of leakage in weakly nonlinear qubits. , 2009, Physical review letters.

[23]  A. Kemp,et al.  Coupling superconducting flux qubits at optimal point via dynamic decoupling with the quantum bus , 2008, 0807.1584.

[24]  Austin G. Fowler,et al.  Cavity grid for scalable quantum computation with superconducting circuits , 2007, 0706.3625.

[25]  J. Clarke,et al.  Superconducting quantum bits , 2008, Nature.

[26]  Jian Li,et al.  Entanglement of superconducting qubits via microwave fields: Classical and quantum regimes , 2008, 0803.0397.

[27]  S. Girvin,et al.  Wiring up quantum systems , 2008, Nature.

[28]  F. Nori,et al.  Spectroscopy of superconducting charge qubits coupled by a Josephson inductance , 2008, 0802.0353.

[29]  Franco Nori,et al.  Interqubit coupling mediated by a high-excitation-energy quantum object , 2007, 0709.0237.

[30]  V. Shumeiko,et al.  Quantum bits with Josephson junctions (Review Article) , 2007 .

[31]  Mika A. Sillanpää,et al.  Coherent quantum state storage and transfer between two phase qubits via a resonant cavity , 2007, Nature.

[32]  Jens Koch,et al.  Coupling superconducting qubits via a cavity bus , 2007, Nature.

[33]  J. E. Mooij,et al.  Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits , 2007, Nature.

[34]  S. Lloyd,et al.  Quantum Coherent Tunable Coupling of Superconducting Qubits , 2007, Science.

[35]  F. Nori,et al.  Switchable coupling for superconducting qubits using double resonance in the presence of crosstalk , 2007, cond-mat/0702603.

[36]  S. Girvin,et al.  Quantum information processing with circuit quantum electrodynamics , 2006, cond-mat/0612038.

[37]  John Clarke,et al.  Solid-State Qubits with Current-Controlled Coupling , 2006, Science.

[38]  G. S. Paraoanu,et al.  Microwave-induced coupling of superconducting qubits , 2006, 0801.4541.

[39]  F. Nori,et al.  Generalized switchable coupling for superconducting qubits using double resonance , 2006, cond-mat/0605685.

[40]  Y. Makhlin,et al.  Tunable coupling of qubits: Nonadiabatic corrections , 2006, cond-mat/0602086.

[41]  P. Bertet,et al.  Parametric coupling for superconducting qubits , 2005, cond-mat/0509799.

[42]  F. Nori,et al.  Controllable coupling between flux qubits. , 2005, Physical review letters.

[43]  F. Nori,et al.  Superconducting Circuits and Quantum Information , 2005, quant-ph/0601121.

[44]  M. Wallquist,et al.  Superconducting qubit network with controllable nearest-neighbour coupling , 2005, cond-mat/0504250.

[45]  Matthias Steffen,et al.  Simultaneous State Measurement of Coupled Josephson Phase Qubits , 2005, Science.

[46]  A. Berkley,et al.  Mediated tunable coupling of flux qubits , 2005, cond-mat/0501148.

[47]  M. Devoret,et al.  Protocol for Universal Gates in Optimally Biased Superconducting Qubits , 2004, quant-ph/0412009.

[48]  K. B. Whaley,et al.  Entangling flux qubits with a bipolar dynamic inductance , 2004, quant-ph/0406049.

[49]  H. Meyer,et al.  Evidence for entangled states of two coupled flux qubits. , 2003, Physical review letters.

[50]  O. Astafiev,et al.  Demonstration of conditional gate operation using superconducting charge qubits , 2003, Nature.

[51]  Roberto Ramos,et al.  Entangled Macroscopic Quantum States in Two Superconducting Qubits , 2003, Science.

[52]  D. Averin,et al.  Variable electrostatic transformer: controllable coupling of two charge qubits. , 2003, Physical review letters.

[53]  F. Wellstood,et al.  Quantum logic gates for coupled superconducting phase qubits. , 2003, Physical review letters.

[54]  K. B. Whaley,et al.  Geometric theory of nonlocal two-qubit operations , 2002, quant-ph/0209120.

[55]  Y. Makhlin Nonlocal Properties of Two-Qubit Gates and Mixed States, and the Optimization of Quantum Computations , 2000, Quantum Inf. Process..

[56]  J. Gilman,et al.  Nanotechnology , 2001 .

[57]  Y. Makhlin,et al.  Quantum-state engineering with Josephson-junction devices , 2000, cond-mat/0011269.

[58]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[59]  S. Huelga,et al.  Entangling atoms and ions in dissipative environments , 2000, quant-ph/0007082.

[60]  S. Lloyd,et al.  Resonant cancellation of off-resonant effects in a multilevel qubit , 2000, quant-ph/0003034.

[61]  P. Knight,et al.  Coherent manipulation of two dipole—dipole interacting ions , 2000 .

[62]  Jonathan A. Jones,et al.  Efficient refocusing of one-spin and two-spin interactions for NMR quantum computation. , 1999, Journal of magnetic resonance.

[63]  N. Linden,et al.  An implementation of the Deutsch-Jozsa algorithm on a three-qubit NMR quantum computer , 1998, quant-ph/9808039.