Geometry of Grassmannians and optimal transport of quantum states

Let H be a separable Hilbert space. We prove that the Grassmannian Pc(H) of the finite dimensional subspaces of H is an Alexandrov space of nonnegative curvature and we employ its metric geometry to develop the theory of optimal transport for the normal states of the von Neumann algebra of linear and bounded operators B(H). Seeing density matrices as discrete probability measures on Pc(H) (via the spectral theorem) we define an optimal transport cost and the Wasserstein distance for normal states. In particular we obtain a cost which induces the w-topology. Our construction is compatible with the quantum mechanics approach of composite systems as tensor products H⊗H. We provide indeed an interpretation of the pure normal states of B(H⊗H) as families of transport maps. This also defines a Wasserstein cost for the pure normal states of B(H⊗ H), reconciling with our proposal.

[1]  Francesco D'Andrea,et al.  A dual formula for the spectral distance in noncommutative geometry , 2018, 1807.06935.

[2]  D. W. Robinson Normal and locally normal states , 1970 .

[3]  Riemannian geometry of finite rank positive operators , 2005 .

[4]  Andrew Lesniewski,et al.  Noncommutative Geometry , 1997 .

[5]  G. Corach,et al.  The Geometry of Spaces of Projections in C*-Algebras , 1993 .

[6]  Operators which are the difference of two projections , 2014 .

[7]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[8]  THE GRASSMANN MANIFOLD OF A HILBERT SPACE , 2014 .

[9]  A. Connes Compact metric spaces, Fredholm modules, and hyperfiniteness , 1989, Ergodic Theory and Dynamical Systems.

[10]  F. Herbut On bipartite pure-state entanglement structure in terms of disentanglement , 2006, quant-ph/0609073.

[11]  D. Voiculescu,et al.  A free probability analogue of the Wasserstein metric on the trace-state space , 2000, math/0006044.

[12]  B. Blackadar,et al.  Operator Algebras: Theory of C*-Algebras and von Neumann Algebras , 2005 .

[13]  Stephan L. Mintz,et al.  Fundamental Theories in Physics , 2012, Studies in the Natural Sciences.

[14]  Richard V. Kadison,et al.  Fundamentals of the Theory of Operator Algebras. Volume IV , 1998 .

[15]  Tosio Kato Perturbation theory for linear operators , 1966 .

[16]  B. Simon,et al.  The Index of a Pair of Projections , 1994 .

[17]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[18]  K. Sinha,et al.  On pairs of projections in a Hilbert space , 1994 .

[19]  F. Shultz,et al.  Unique decompositions, faces, and automorphisms of separable states , 2009, 0906.1761.

[20]  Pairs of Projections: Geodesics, Fredholm and Compact Pairs , 2014 .

[21]  Wallace Alvin Wilson,et al.  On Semi-Metric Spaces , 1931 .

[22]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[23]  S. Bianchini,et al.  On the extremality, uniqueness and optimality of transference plans , 2009 .

[24]  V. Jurdjevic,et al.  Extremal Curves on Stiefel and Grassmann Manifolds , 2018, The Journal of Geometric Analysis.

[25]  E. Carlen,et al.  Gradient flow and entropy inequalities for quantum Markov semigroups with detailed balance , 2016, 1609.01254.

[26]  C. Villani Optimal Transport: Old and New , 2008 .

[27]  Florio M. Ciaglia,et al.  Mathematik in den Naturwissenschaften Leipzig Manifolds of classical probability distributions and quantum density operators in infinite dimensions , 2019 .

[28]  L. Recht,et al.  Minimality of geodesics in grassmann manifolds , 1987 .

[29]  E. Carlen,et al.  Non-commutative Calculus, Optimal Transport and Functional Inequalities in Dissipative Quantum Systems , 2018, Journal of statistical physics.

[30]  E. Carlen,et al.  An Analog of the 2-Wasserstein Metric in Non-Commutative Probability Under Which the Fermionic Fokker–Planck Equation is Gradient Flow for the Entropy , 2012, 1203.5377.

[31]  The Finsler geometry of groups of isometries of Hilbert Space , 1987 .

[32]  J. Sauvageot,et al.  Derivations as square roots of Dirichlet forms , 2003 .

[33]  Andrea C. G. Mennucci,et al.  Geodesics in infinite dimensional Stiefel and Grassmann manifolds , 2012 .

[34]  T. Paul,et al.  On the Mean Field and Classical Limits of Quantum Mechanics , 2015, Communications in Mathematical Physics.

[35]  Tim Schmitz,et al.  The Foundations Of Differential Geometry , 2016 .

[36]  P. Michor,et al.  The Convenient Setting of Global Analysis , 1997 .

[37]  The manifold of finite rank projections in the algebra ℒ(H) of bounded linear operators , 2001, math/0110115.

[38]  A. Petrunin,et al.  Curvature bounded below: A definition a la Berg--Nikolaev , 2010, 1008.3318.