Geometry of Grassmannians and optimal transport of quantum states
暂无分享,去创建一个
[1] Francesco D'Andrea,et al. A dual formula for the spectral distance in noncommutative geometry , 2018, 1807.06935.
[2] D. W. Robinson. Normal and locally normal states , 1970 .
[3] Riemannian geometry of finite rank positive operators , 2005 .
[4] Andrew Lesniewski,et al. Noncommutative Geometry , 1997 .
[5] G. Corach,et al. The Geometry of Spaces of Projections in C*-Algebras , 1993 .
[6] Operators which are the difference of two projections , 2014 .
[7] Alan Edelman,et al. The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..
[8] THE GRASSMANN MANIFOLD OF A HILBERT SPACE , 2014 .
[9] A. Connes. Compact metric spaces, Fredholm modules, and hyperfiniteness , 1989, Ergodic Theory and Dynamical Systems.
[10] F. Herbut. On bipartite pure-state entanglement structure in terms of disentanglement , 2006, quant-ph/0609073.
[11] D. Voiculescu,et al. A free probability analogue of the Wasserstein metric on the trace-state space , 2000, math/0006044.
[12] B. Blackadar,et al. Operator Algebras: Theory of C*-Algebras and von Neumann Algebras , 2005 .
[13] Stephan L. Mintz,et al. Fundamental Theories in Physics , 2012, Studies in the Natural Sciences.
[14] Richard V. Kadison,et al. Fundamentals of the Theory of Operator Algebras. Volume IV , 1998 .
[15] Tosio Kato. Perturbation theory for linear operators , 1966 .
[16] B. Simon,et al. The Index of a Pair of Projections , 1994 .
[17] Yann Brenier,et al. A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.
[18] K. Sinha,et al. On pairs of projections in a Hilbert space , 1994 .
[19] F. Shultz,et al. Unique decompositions, faces, and automorphisms of separable states , 2009, 0906.1761.
[20] Pairs of Projections: Geodesics, Fredholm and Compact Pairs , 2014 .
[21] Wallace Alvin Wilson,et al. On Semi-Metric Spaces , 1931 .
[22] Pérès. Separability Criterion for Density Matrices. , 1996, Physical review letters.
[23] S. Bianchini,et al. On the extremality, uniqueness and optimality of transference plans , 2009 .
[24] V. Jurdjevic,et al. Extremal Curves on Stiefel and Grassmann Manifolds , 2018, The Journal of Geometric Analysis.
[25] E. Carlen,et al. Gradient flow and entropy inequalities for quantum Markov semigroups with detailed balance , 2016, 1609.01254.
[26] C. Villani. Optimal Transport: Old and New , 2008 .
[27] Florio M. Ciaglia,et al. Mathematik in den Naturwissenschaften Leipzig Manifolds of classical probability distributions and quantum density operators in infinite dimensions , 2019 .
[28] L. Recht,et al. Minimality of geodesics in grassmann manifolds , 1987 .
[29] E. Carlen,et al. Non-commutative Calculus, Optimal Transport and Functional Inequalities in Dissipative Quantum Systems , 2018, Journal of statistical physics.
[30] E. Carlen,et al. An Analog of the 2-Wasserstein Metric in Non-Commutative Probability Under Which the Fermionic Fokker–Planck Equation is Gradient Flow for the Entropy , 2012, 1203.5377.
[31] The Finsler geometry of groups of isometries of Hilbert Space , 1987 .
[32] J. Sauvageot,et al. Derivations as square roots of Dirichlet forms , 2003 .
[33] Andrea C. G. Mennucci,et al. Geodesics in infinite dimensional Stiefel and Grassmann manifolds , 2012 .
[34] T. Paul,et al. On the Mean Field and Classical Limits of Quantum Mechanics , 2015, Communications in Mathematical Physics.
[35] Tim Schmitz,et al. The Foundations Of Differential Geometry , 2016 .
[36] P. Michor,et al. The Convenient Setting of Global Analysis , 1997 .
[37] The manifold of finite rank projections in the algebra ℒ(H) of bounded linear operators , 2001, math/0110115.
[38] A. Petrunin,et al. Curvature bounded below: A definition a la Berg--Nikolaev , 2010, 1008.3318.