Near-Infrared Spectroscopic Cathodoluminescence Imaging Polarimetry on Silicon Photonic Crystal Waveguides

We measure polarization- and wavelength-resolved spectra and spatial emission intensity distributions from silicon photonic crystal waveguides in the near-infrared spectral range using spectroscopic cathodoluminescence imaging polarimetry. A 30 keV electron beam, incident along the surface normal of the sample, acts as an ultrabroadband and deeply subwavelength excitation source. For photonic crystal waveguides with a broad range of design parameters, we observe a dominant emission intensity distribution that is strongly confined to the waveguide. For a period of 420 nm and a hole radius of 120 nm, this occurs at a wavelength of 1425 nm. The polarization-resolved measurements demonstrate that this feature is fully linearly polarized along the waveguide axis. Comparing the modal pattern and polarization to calculations of the electric field profiles confirms that we measure the odd TE waveguide mode of the system. This result demonstrates that the electron beam can couple to modes dominated by in-plane fie...

[1]  Benjamin J. M. Brenny,et al.  Femtosecond plasmon and photon wave packets excited by a high-energy electron on a metal or dielectric surface , 2016 .

[2]  K. Debnath,et al.  Lithographic wavelength control of an external cavity laser with a silicon photonic crystal cavity-based resonant reflector. , 2016, Optics letters.

[3]  Benjamin J. M. Brenny,et al.  Angle-Resolved Cathodoluminescence Imaging Polarimetry , 2015, 1510.07976.

[4]  M. Kociak,et al.  Link between Cathodoluminescence and Electron Energy Loss Spectroscopy and the Radiative and Full Electromagnetic Local Density of States , 2015 .

[5]  Diego R. Abujetas,et al.  Unraveling the Janus Role of Mie Resonances and Leaky/Guided Modes in Semiconductor Nanowire Absorption for Enhanced Light Harvesting , 2015 .

[6]  R. Schuster,et al.  Angular Dependence of Cathodoluminescence of Linear and Circular Au Gratings: Imaging the Coupling Angles between Surface Plasmon Polaritons and Light , 2014 .

[7]  Benjamin J. M. Brenny,et al.  Quantifying coherent and incoherent cathodoluminescence in semiconductors and metals , 2014 .

[8]  S. Noda,et al.  Watt-class high-power, high-beam-quality photonic-crystal lasers , 2014, Nature Photonics.

[9]  D. Beggs,et al.  Simultaneous measurement of nanoscale electric and magnetic optical fields , 2013, Nature Photonics.

[10]  J. Rivas,et al.  Enhanced and directional emission of semiconductor nanowires tailored through leaky/guided modes. , 2013, Nanoscale.

[11]  N. Yamamoto,et al.  Size dependence of surface plasmon modes in one-dimensional plasmonic crystal cavities. , 2013, Optics express.

[12]  N. Zheludev,et al.  Electron-beam-driven collective-mode metamaterial light source. , 2012, Physical review letters.

[13]  Mark W. Knight,et al.  Aluminum plasmonic nanoantennas. , 2012, Nano letters.

[14]  A. Polman,et al.  Deep-subwavelength imaging of the modal dispersion of light. , 2012, Nature materials.

[15]  A. Polman,et al.  Polarization-sensitive cathodoluminescence Fourier microscopy. , 2012, Optics express.

[16]  Nicolas Geuquet,et al.  Plasmon spectroscopy and imaging of individual gold nanodecahedra: a combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study. , 2012, Nano letters.

[17]  Tobias Kampfrath,et al.  Ultrafast tunable optical delay line based on indirect photonic transitions. , 2012, Physical review letters.

[18]  Andrea Melloni,et al.  The first decade of coupled resonator optical waveguides: bringing slow light to applications , 2012 .

[19]  A. Polman,et al.  Plasmonic whispering gallery cavities as optical nanoantennas. , 2011, Nano letters.

[20]  A. Melloni,et al.  Slow pulses in disordered photonic-crystal waveguides. , 2011, Applied optics.

[21]  A. Polman,et al.  Angle-resolved cathodoluminescence spectroscopy , 2011, 1107.3632.

[22]  N. Yamamoto,et al.  Visualization of surface plasmon polariton waves in two-dimensional plasmonic crystal by cathodoluminescence. , 2011, Optics express.

[23]  F. J. García de abajo,et al.  Gap and Mie plasmons in individual silver nanospheres near a silver surface. , 2011, Nano letters.

[24]  Yanming Ma,et al.  Confined three-dimensional plasmon modes inside a ring-shaped nanocavity on a silver film imaged by cathodoluminescence microscopy. , 2010, Physical review letters.

[25]  L. O'Faolain,et al.  Tunable Delay Lines in Silicon Photonics: Coupled Resonators and Photonic Crystals, a Comparison , 2010, IEEE Photonics Journal.

[26]  A. Bleloch,et al.  Structural and optical properties of high quality zinc-blende/wurtzite GaAs nanowire heterostructures , 2009, 0907.1444.

[27]  D. Moss,et al.  Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides , 2009 .

[28]  F. D. Abajo,et al.  Optical excitations in electron microscopy , 2009, 0903.1669.

[29]  Thomas F. Krauss,et al.  Accurate determination of the functional hole size in photonic crystal slabs using optical methods , 2008 .

[30]  Toshihiko Baba,et al.  Slow light in photonic crystals , 2008 .

[31]  T. Krauss,et al.  Coupling length of silicon-on-insulator directional couplers probed by Fourier-space imaging , 2008 .

[32]  T. Krauss,et al.  Ultracompact and low-power optical switch based on silicon photonic crystals. , 2008, Optics letters.

[33]  P Lalanne,et al.  Theoretical and computational concepts for periodic optical waveguides. , 2007, Optics express.

[34]  N I Zheludev,et al.  Hyperspectral imaging of plasmonic nanostructures with nanoscale resolution. , 2007, Optics express.

[35]  P. Borel,et al.  Grating-assisted superresolution of slow waves in Fourier space , 2007 .

[36]  T. Krauss,et al.  Slow light in photonic crystal waveguides , 2007 .

[37]  V Zabelin,et al.  Self-collimating photonic crystal polarization beam splitter. , 2007, Optics letters.

[38]  H. Hamann,et al.  Active control of slow light on a chip with photonic crystal waveguides , 2005, Nature.

[39]  Masayuki Fujita,et al.  Simultaneous Inhibition and Redistribution of Spontaneous Light Emission in Photonic Crystals , 2005, Science.

[40]  T. Krauss,et al.  Real-space observation of ultraslow light in photonic crystal waveguides. , 2005, Physical review letters.

[41]  S. Hughes Enhanced single-photon emission from quantum dots in photonic crystal waveguides and nanocavities. , 2004, Optics letters.

[42]  G. Rupper,et al.  Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity , 2004, Nature.

[43]  Soon-Hong Kwon,et al.  Electrically Driven Single-Cell Photonic Crystal Laser , 2004, Science.

[44]  T. Asano,et al.  High-Q photonic nanocavity in a two-dimensional photonic crystal , 2003, Nature.

[45]  Daniel Courjon,et al.  History of Near-field Optics , 2003 .

[46]  Thomas P. Pearsall,et al.  Experimental and theoretical confirmation of Bloch-mode light propagation in planar photonic crystal waveguides , 2002 .

[47]  A. Dereux,et al.  Imaging the local density of states of optical corrals. , 2002, Physical review letters.

[48]  M. Notomi,et al.  Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. , 2001, Physical review letters.

[49]  Jean-Claude Weeber,et al.  Relationship between scanning near-field optical images and local density of photonic states , 2001 .

[50]  S. Noda,et al.  Polarization Mode Control of Two-Dimensional Photonic Crystal Laser by Unit Cell Structure Design , 2001, Science.

[51]  Steven G. Johnson,et al.  Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis. , 2001, Optics express.

[52]  Steven G. Johnson,et al.  Linear waveguides in photonic-crystal slabs , 2000 .

[53]  G. Ozin,et al.  Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres , 2000, Nature.

[54]  Thomas F. Krauss,et al.  Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths , 1996, Nature.

[55]  Henri Benisty,et al.  Modal analysis of optical guides with two‐dimensional photonic band‐gap boundaries , 1996 .

[56]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[57]  E. Yablonovitch Photonic band-gap structures , 1993 .

[58]  T. D. Harris,et al.  Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric Scale , 1991, Science.

[59]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[60]  W. Denk,et al.  Optical stethoscopy: Image recording with resolution λ/20 , 1984 .

[61]  Lukas Novotny,et al.  Chapter 5 The history of near-field optics , 2007 .

[62]  E. Yablonovitch Photonic bandgap structures , 2002 .

[63]  Ferrell,et al.  New form of scanning optical microscopy. , 1989, Physical review. B, Condensed matter.

[64]  M. Born Principles of Optics : Electromagnetic theory of propagation , 1970 .