An invariant property of balls in arrangements of hyperplanes
暂无分享,去创建一个
AbstractLet ℋ be a collection ofn hyperplanes ind-space in general position. For each tuple ofd+1 hyperplanes of ℋ consider the open ball inscribed in the simplex that they form. Let ℬk denote the number of such balls intersected by exactlyk hyperplanes, fork=0, 1,...,n−d−1. We show that
% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaaie% GacaWFcbWaaSbaaSqaaiaa-TgaaeqaaaGccaGLhWUaayjcSdGaeyyp% a0ZaaeWaaeaafaqabeGabaaabaGaamOBaiabgkHiTiaadUgacqGHsi% slcaaIXaaabaGaamizaaaaaiaawIcacaGLPaaaaaa!42DC!
$$\left| {B_k } \right| = \left( {\begin{array}{*{20}c} {n - k - 1} \\ d \\ \end{array} } \right)$$
.
[1] Herbert Edelsbrunner,et al. Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.
[2] T. Zaslavsky. Facing Up to Arrangements: Face-Count Formulas for Partitions of Space by Hyperplanes , 1975 .
[3] Kenneth L. Clarkson,et al. Applications of random sampling in computational geometry, II , 1988, SCG '88.
[4] Kenneth L. Clarkson. A bound on local minima of arrangements that implies the upper bound theorem , 1993, Discret. Comput. Geom..