Dynamic measurement of the surface stress induced by the attachment and growth of cells on Au electrode with a quartz crystal microbalance.

[1]  A. Simmons,et al.  Extracellular matrix remodelling during cell adhesion monitored by the quartz crystal microbalance. , 2008, Biomaterials.

[2]  D. Fernig,et al.  Real-time monitoring of the development and stability of biofilms of Streptococcus mutans using the quartz crystal microbalance with dissipation monitoring. , 2007, Biosensors & bioelectronics.

[3]  Z. Mo,et al.  Disruption of HepG2 cell adhesion by gold nanoparticle and Paclitaxel disclosed by in situ QCM measurement. , 2007, Colloids and surfaces. B, Biointerfaces.

[4]  P. Skládal,et al.  Adhesion of eukaryotic cell lines on the gold surface modified with extracellular matrix proteins monitored by the piezoelectric sensor. , 2007, Biosensors & bioelectronics.

[5]  J. Wegener,et al.  Monitoring cell adhesion by piezoresonators: impact of increasing oscillation amplitudes. , 2007, Analytical chemistry.

[6]  Hidenori Suzuki,et al.  The SPR signal in living cells reflects changes other than the area of adhesion and the formation of cell constructions. , 2007, Biosensors & bioelectronics.

[7]  T. Thundat,et al.  Observation of the surface stress induced in microcantilevers by electrochemical redox processes. , 2004, Ultramicroscopy.

[8]  Yuji Murakami,et al.  Application of on-chip cell cultures for the detection of allergic response. , 2004, Biosensors & bioelectronics.

[9]  K. Marx,et al.  Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface. , 2003, Biomacromolecules.

[10]  P. Petrini,et al.  Silk fibroin/poly(carbonate)-urethane as a substrate for cell growth: in vitro interactions with human cells. , 2003, Biomaterials.

[11]  S A Gray,et al.  Design and demonstration of an automated cell-based biosensor. , 2001, Biosensors & bioelectronics.

[12]  J H Luong,et al.  Monitoring motility, spreading, and mortality of adherent insect cells using an impedance sensor. , 2001, Analytical chemistry.

[13]  C. Steinem,et al.  Piezoelectric Mass-Sensing Devices as Biosensors-An Alternative to Optical Biosensors? , 2000, Angewandte Chemie.

[14]  H. Galla,et al.  Analysis of the composite response of shear wave resonators to the attachment of mammalian cells. , 2000, Biophysical journal.

[15]  J. C. Hoogvliet,et al.  Electrochemical pretreatment of polycrystalline gold electrodes to produce a reproducible surface roughness for self-assembly: a study in phosphate buffer pH 7.4 , 2000, Analytical chemistry.

[16]  S. Yao,et al.  A Study of Depletion Layer Effects on Equivalent Circuit Parameters Using an Electrochemical Quartz Crystal Impedance System , 1999 .

[17]  Y. Ci,et al.  Voltammetric behavior of mammalian tumor cells and bioanalytical applications in cell metabolism. , 1999, Bioelectrochemistry and bioenergetics.

[18]  E O Pettersen,et al.  Cell adhesion force microscopy. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[19]  A. Bard,et al.  Scanning electrochemical microscopy. 36. A combined scanning electrochemical microscope-quartz crystal microbalance instrument for studying thin films. , 1998, Analytical chemistry.

[20]  Y. Ci,et al.  Photoelectric behavior of mammalian cells and its bioanalytical applications , 1998 .

[21]  James K. Gimzewski,et al.  Surface stress in the self-assembly of alkanethiols on gold , 1997 .

[22]  C. S. Chen,et al.  Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[23]  T. Mitchison,et al.  Actin-Based Cell Motility and Cell Locomotion , 1996, Cell.

[24]  D. Lauffenburger,et al.  Cell Migration: A Physically Integrated Molecular Process , 1996, Cell.

[25]  B. Gumbiner,et al.  Cell Adhesion: The Molecular Basis of Tissue Architecture and Morphogenesis , 1996, Cell.

[26]  B. Parr,et al.  The body language of cells: The intimate connection between cell adhesion and behavior , 1995, Cell.

[27]  K. Jacobson,et al.  Traction forces generated by locomoting keratocytes , 1994, The Journal of cell biology.

[28]  Stephen J. Martin,et al.  Characterization of a thickness‐shear mode quartz resonator with multiple nonpiezoelectric layers , 1994 .

[29]  Pierre Müller,et al.  About the measurement of absolute isotropic surface stress of crystals , 1994 .

[30]  D. Puleo,et al.  Osteoblast attachment monitored with a quartz crystal microbalance. , 1993, Analytical chemistry.

[31]  Stephen J. Martin,et al.  Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading , 1991 .

[32]  D. Ingber,et al.  Integrins as mechanochemical transducers. , 1991, Current opinion in cell biology.

[33]  F. J. V. Preissig Applicability of the classical curvature-stress relation for thin films on plate substrates , 1989 .

[34]  J. Gordon,et al.  Frequency of a quartz microbalance in contact with liquid , 1985 .

[35]  G. Bastiaans,et al.  Piezoelectric crystals as detectors in liquid chromatography , 1980 .

[36]  E. P. Eernisse Extension of the double resonator technique , 1973 .

[37]  E. P. EerNisse,et al.  Simultaneous Thin‐Film Stress and Mass‐Change Measurements Using Quartz Resonators , 1972 .

[38]  G. Sauerbrey Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung , 1959 .

[39]  K. Marx,et al.  Quartz Crystal Microbalance Study of Endothelial Cell Number Dependent Differences in Initial Adhesion and Steady‐State Behavior: Evidence for Cell‐Cell Cooperativity in Initial Adhesion and Spreading , 2003, Biotechnology progress.

[40]  K. Marx,et al.  The Quartz Crystal Microbalance as a Continuous Monitoring Tool for the Study of Endothelial Cell Surface Attachment and Growth , 2000, Biotechnology progress.

[41]  B. Kasemo,et al.  The Piezoelectric Quartz Crystal Mass and Dissipation Sensor: A Means of Studying Cell Adhesion , 1998 .

[42]  Myoungsu Shin,et al.  Frequency-Distance Responses in SECM-EQCM: A Novel Method for Calibration of the Tip-Sample Distance$\S$ , 1998 .

[43]  H. Galla,et al.  Double-mode impedance analysis of epithelial cell monolayers cultured on shear wave resonators , 1996, European Biophysics Journal.

[44]  C. Danilowicz,et al.  Measurement of viscoelastic changes at electrodes modified with redox hydrogels with a quartz crystal device , 1995 .

[45]  M. Ward,et al.  The Role of Longitudinal Waves in Quartz Crystal Microbalance Applications in Liquids , 1995 .

[46]  Alan Townshend,et al.  Applications of piezoelectric quartz crystal microbalances , 1987 .

[47]  A. Adamson Physical chemistry of surfaces , 1960 .

[48]  G. Sauerbrey,et al.  Use of quartz vibration for weighing thin films on a microbalance , 1959 .