Wire Metamaterials: Physics and Applications

The physics and applications of a broad class of artificial electromagnetic materials composed of lattices of aligned metal rods embedded in a dielectric matrix are reviewed. Such structures are here termed wire metamaterials. They appear in various settings and can operate from microwaves to THz and optical frequencies. An important group of these metamaterials is a wire medium possessing extreme optical anisotropy. The study of wire metamaterials has a long history, however, most of their important and useful properties have been revealed and understood only recently, especially in the THz and optical frequency ranges where the wire media correspond to the lattices of microwires and nanowires, respectively. Another group of wire metamaterials are arrays and lattices of nanorods of noble metals whose unusual properties are driven by plasmonic resonances.

[1]  F. Capolino,et al.  Directive Leaky-Wave Radiation From a Dipole Source in a Wire-Medium Slab , 2008, IEEE Transactions on Antennas and Propagation.

[2]  M. Silveirinha,et al.  Additional boundary condition for the wire medium , 2006, IEEE Transactions on Antennas and Propagation.

[3]  C. Fernandes,et al.  A hybrid method for the efficient calculation of the band structure of 3-D metallic crystals , 2004, IEEE Transactions on Microwave Theory and Techniques.

[4]  Dennis G. Hall,et al.  Enhanced Dipole-Dipole Interaction between Elementary Radiators Near a Surface , 1998 .

[5]  N. Engheta,et al.  Parallel-plate metamaterials for cloaking structures. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Y. Iwasa Handbook of Superconducting Materials , 2002 .

[7]  Vladimir M. Shalaev,et al.  Optics: Beyond diffraction , 2007, Nature.

[8]  Efficiency of subwavelength imaging with multisegment nanolens , 2011 .

[9]  Yuri S. Kivshar,et al.  Spontaneous radiation of a finite-size dipole emitter in hyperbolic media , 2011, 1105.5692.

[10]  Gennady Shvets,et al.  Plasmonic endoscope: guiding, magnifying, and focusing of infrared radiation on a nanoscale , 2007, SPIE NanoScience + Engineering.

[11]  Jorge R. Costa,et al.  Electromagnetic Characterization of Textured Surfaces Formed by Metallic Pins , 2008, IEEE Transactions on Antennas and Propagation.

[12]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[13]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[14]  S A Tretyakov,et al.  Two-dimensional electromagnetic crystals formed by reactively loaded wires. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  G. Wurtz,et al.  Growth and properties of gold and nickel nanorods in thin film alumina , 2006 .

[16]  P. Nordlander Plasmonics: Subwavelength imaging in colour , 2008 .

[17]  Eric A. Dauler,et al.  Kinetic-inductance-limited reset time of superconducting nanowire photon counters , 2005, physics/0510238.

[18]  Charles R. Martin,et al.  Nanomaterials: A Membrane-Based Synthetic Approach , 1994, Science.

[19]  C. Fernandes,et al.  Homogenization of 3-D-connected and nonconnected wire metamaterials , 2005, IEEE Transactions on Microwave Theory and Techniques.

[20]  Yang Hao,et al.  Magnification of subwavelength field distributions at microwave frequencies using a wire medium slab operating in the canalization regime , 2007, 0705.3183.

[21]  R. Carminati,et al.  Near-field thermophotovoltaic energy conversion , 2006 .

[22]  Y. Hao,et al.  Subwavelength microwave imaging using an array of parallel conducting wires as a lens , 2006 .

[23]  C. Craeye,et al.  Numerical and Experimental Analysis of a Wire Medium Collimator for Magnetic Resonance Imaging , 2008 .

[24]  P. Greiff,et al.  Micron-gap ThermoPhotoVoltaics (MTPV) , 2004 .

[25]  J. Wiley,et al.  Preparation of free-standing metal wire arrays by in situ assembly , 2008 .

[26]  John B. Pendry,et al.  Refining the perfect lens , 2003 .

[27]  Carlos A. Fernandes,et al.  Additional boundary condition for a wire medium connected to a metallic surface , 2007, 0711.4515.

[28]  Christophe Caloz,et al.  Ferromagnetic Nanowire Metamaterials: Theory and Applications , 2011, IEEE Transactions on Microwave Theory and Techniques.

[29]  Pekka Ikonen,et al.  Light-weight base station antenna with artificial wire medium lens , 2005 .

[30]  Y. Hao,et al.  Magnification of subwavelength field distributions using a tapered array of metallic wires with planar interfaces and an embedded dielectric phase compensator , 2010 .

[31]  Yang Hao,et al.  Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution , 2010 .

[32]  Constantin Simovski,et al.  Giant radiation heat transfer through micron gaps , 2011, 1103.0407.

[33]  Christophe Craeye,et al.  Toward a wire medium endoscope for MRI imaging. , 2009 .

[34]  Stewart,et al.  Extremely low frequency plasmons in metallic mesostructures. , 1996, Physical review letters.

[35]  W. Rotman Plasma simulation by artificial dielectrics and parallel-plate media , 1962 .

[36]  K. G. Gopchandran,et al.  Gold nanorods with finely tunable longitudinal surface plasmon resonance as SERS substrates , 2011, Nanotechnology.

[37]  P. Granitzer,et al.  Porous Silicon—A Versatile Host Material , 2010, Materials.

[38]  Zhaowei Liu,et al.  Optical Negative Refraction in Bulk Metamaterials of Nanowires , 2008, Science.

[39]  R. W. Beatty,et al.  on Microwave Theory and Techniques , 1959 .

[40]  G. Lovat,et al.  Modal properties of layered metamaterials , 2009 .

[41]  Carlos A. Fernandes,et al.  Nonresonant structured material with extreme effective parameters , 2008 .

[42]  E. Narimanov,et al.  Bulk photonic metamaterial with hyperbolic dispersion , 2008, 0809.1028.

[43]  Mário G. Silveirinha,et al.  Transport of an arbitrary near-field component with an array of tilted wires , 2009 .

[44]  Sailing He Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications. By Christophe Caloz and Tatsuo Itoh. , 2007 .

[45]  Vladimir M. Shalaev,et al.  Optical Metamaterials: Fundamentals and Applications , 2009 .

[46]  S. Tretyakov,et al.  Experimental validation of the suppression of spatial dispersion in artificial plasma , 2010, 2010 IEEE Antennas and Propagation Society International Symposium.

[47]  J. Pendry,et al.  Imaging the near field , 2002, cond-mat/0207026.

[48]  Ququan Wang,et al.  Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging. , 2010, ACS nano.

[49]  Zhuomin M. Zhang,et al.  Thermal radiative properties of metamaterials and other nanostructured materials: A review , 2009 .

[50]  L. Berlouis,et al.  Reflectance and SERS from an ordered array of gold nanorods , 2007 .

[51]  S. Kawata,et al.  Subwavelength colour imaging with a metallic nanolens , 2008 .

[52]  Imaging properties of uniaxially anisotropic negative refractive index materials , 2003 .

[53]  Nonlocal homogenization model for a periodic array of epsilon-negative rods. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  Pekka Ikonen,et al.  Canalization of subwavelength images by electromagnetic crystals , 2005 .

[55]  Fabrication of hexagonally ordered nanopores in anodic alumina: An alternative pretreatment , 2011, 1102.3940.

[56]  Ekmel Ozbay,et al.  Negative refraction and superlens behavior in a two-dimensional photonic crystal , 2005 .

[57]  Alexander Wei,et al.  Uniform gold nanorod arrays from polyethylenimine-coated alumina templates. , 2005, The journal of physical chemistry. B.

[58]  Jung Sang Suh,et al.  Silver nanorods used to promote SERS as a quantitative analytical tool , 2010 .

[59]  F. Capolino,et al.  Analysis of directive radiation from a line source in a metamaterial slab with low permittivity , 2006, IEEE Transactions on Antennas and Propagation.

[60]  Jean-Jacques Greffet,et al.  Thermal radiation scanning tunnelling microscopy , 2006, Nature.

[61]  M. Shur,et al.  Handbook Series on Semiconductor Parameters , 1996 .

[62]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[63]  Reimar Spohr,et al.  Ion Tracks and Microtechnology , 1990 .

[64]  Ceji Fu,et al.  Review of near‐field thermal radiation and its application to energy conversion , 2009 .

[65]  Toshiaki Tamamura,et al.  Conditions for Fabrication of Ideally Ordered Anodic Porous Alumina Using Pretextured Al , 2001 .

[66]  D. Kaharudin,et al.  Microwave and Optical Technology Letters , 1988 .

[67]  P. Belov,et al.  Ultimate limit of resolution of subwavelength imaging devices formed by metallic rods. , 2008, Optics letters.

[68]  C. G. Fonstad,et al.  Very large radiative transfer over small distances from a black body for thermophotovoltaic applications , 2000 .

[69]  Jan Machac,et al.  A triple wire medium as an isotropic negative permittivity metamaterial , 2006 .

[70]  K. Balmain,et al.  Negative Refraction Metamaterials: Fundamental Principles and Applications , 2005 .

[71]  L. Napolitano Materials , 1984, Science.

[72]  J. Tsang,et al.  Surface-Enhanced Raman Spectroscopy and Surface Plasmons , 1979 .

[73]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[74]  M. Silveirinha,et al.  Nonlocal permittivity from a quasistatic model for a class of wire media , 2009, 0908.1104.

[75]  L. Felsen,et al.  Radiation and scattering of waves , 1972 .

[76]  Sergei A. Tretyakov,et al.  Dispersion and Reflection Properties of Artificial Media Formed By Regular Lattices of Ideally Conducting Wires , 2002 .

[77]  Michael G. Mauk,et al.  Survey of Thermophotovoltaic (TPV) Devices , 2006 .

[78]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[79]  Sergei A. Tretyakov,et al.  Wire media with negative effective permittivity: A quasi‐static model , 2002 .

[80]  S. Tretyakov,et al.  Three-dimensional isotropic perfect lens based on LC-loaded transmission lines , 2005, physics/0509149.

[81]  Sergei A. Tretyakov,et al.  BW media—media with negative parameters, capable of supporting backward waves , 2001 .

[82]  Bernard D. Casse,et al.  Super-resolution imaging using a three-dimensional metamaterials nanolens , 2010 .

[83]  Jin Au Kong,et al.  Progress in Electromagnetics Research , 1989 .

[84]  D. Smith,et al.  Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors. , 2002, Physical Review Letters.

[85]  J. Gilman,et al.  Nanotechnology , 2001 .

[86]  E. Dalchiele,et al.  Silver nanowire arrays electrochemically grown into nanoporous anodic alumina templates , 2006 .

[87]  Paolo Burghignoli,et al.  High directivity in low‐permittivity metamaterial slabs: Ray‐optic vs. leaky‐wave models , 2006 .

[88]  Steven G. Johnson,et al.  All-angle negative refraction without negative effective index , 2002 .

[89]  I Huynen,et al.  Microwave circulator based on ferromagnetic nanowires in an alumina template , 2010, Nanotechnology.

[90]  S. Bobashev,et al.  Field electron emitter for air ionization in a supersonic flow , 2002 .

[91]  M. Ferenets,et al.  Thin Solid Films , 2010 .

[92]  B. Liedberg,et al.  Surface plasmon resonance for gas detection and biosensing , 1983 .

[93]  Ali Eftekhari,et al.  Nanostructured Materials in Electrochemistry , 2008 .

[94]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .

[95]  Noriyoshi Shibata,et al.  Selective synthesis of zigzag-type aligned carbon nanotubes on SiC (000-1) wafers , 2002 .

[96]  Y. Hao,et al.  Subwavelength optical imaging with an array of silver nanorods , 2011 .

[97]  R. Blaikie,et al.  Super-resolution imaging through a planar silver layer. , 2005, Optics express.

[98]  Kamal Sarabandi,et al.  Antennas and Propagation , 2019, 2019 14th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS).

[99]  S A Tretyakov,et al.  Propagating and evanescent modes in two-dimensional wire media. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[100]  A. Sa’ar Photoluminescence from silicon nanostructures: The mutual role of quantum confinement and surface chemistry , 2009 .

[101]  Qihuang Gong,et al.  Metal-insulator-metal nanorod arrays for subwavelength imaging. , 2009, Optics express.

[102]  T. Tamamura,et al.  Ordered Mosaic Nanocomposites in Anodic Porous Alumina , 2003 .

[103]  Volker Westphal,et al.  Nanoscale resolution in the focal plane of an optical microscope. , 2005, Physical review letters.

[104]  G. Tayeb,et al.  A metamaterial for directive emission. , 2002, Physical review letters.

[105]  R Atkinson,et al.  Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime. , 2008, Optics express.

[106]  A. Ngan,et al.  Precise Control of Nanohoneycomb Ordering over Anodic Aluminum Oxide of Square Centimeter Areas , 2011 .

[107]  R. Spohr,et al.  Ion Tracks and Microtechnology: Principles and Applications , 1990 .

[108]  E. E. Narimanov,et al.  Engineering photonic density of states using metamaterials , 2010, 1005.5172.

[109]  V. Lehmann The Physics of Macropore Formation in Low Doped n‐Type Silicon , 1993 .

[110]  F. N. Frenkiel,et al.  Waves In Layered Media , 1960 .

[111]  J B Pendry,et al.  Guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays. , 2007, Physical review letters.

[112]  Xiang Zhang,et al.  All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region. , 2008, Optics express.

[113]  G. Wurtz,et al.  Plasmonic nanorod metamaterials for biosensing. , 2009, Nature materials.

[114]  John B. Pendry,et al.  Taming spatial dispersion in wire metamaterial , 2008 .

[115]  R. King,et al.  The synthesis of surface reactance using an artificial dielectric , 1983 .

[116]  R. Schasfoort,et al.  Handbook of surface plasmon resonance , 2008 .

[117]  Sergei Tretyakov,et al.  Ultrabroadband electromagnetically indefinite medium formed by aligned carbon nanotubes , 2011, 1102.5263.

[118]  Tatsuo Itoh,et al.  Electromagnetic metamaterials : transmission line theory and microwave applications : the engineering approach , 2005 .

[119]  S. Dmitriev,et al.  Ion track membranes providing heat pipe surfaces with capillary structures , 2003 .

[120]  B. Derby,et al.  The strength of gold nanowire forests , 2008 .

[121]  Z. Jacob,et al.  Optical Hyperlens: Far-field imaging beyond the diffraction limit. , 2006, Optics express.

[122]  A. A. Studna,et al.  Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV , 1983 .

[123]  Viktor A. Podolskiy,et al.  Nonlocal effects in effective medium response of nanolayered metamaterials , 2007, 2007 Quantum Electronics and Laser Science Conference.

[124]  M. Sailor Porous Silicon in Practice: Preparation, Characterization and Applications , 2012 .

[125]  Masaya Notomi,et al.  Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap , 2000 .

[126]  Zhaoming Huang,et al.  Photon tunnelling in one-dimensional metamaterial photonic crystals , 2005 .

[127]  I. Nefedov Electromagnetic waves propagating in a periodic array of parallel metallic carbon nanotubes , 2010 .

[128]  J. Meseguer,et al.  Thermal radiation heat transfer , 2012 .

[129]  Leszek Zaraska,et al.  Porous anodic alumina membranes formed by anodization of AA1050 alloy as templates for fabrication of metallic nanowire arrays , 2010 .

[130]  V. Ulin,et al.  Fabrication and optical properties of porous InP structures , 2012 .

[131]  Paolo Burghignoli,et al.  Combinations of low/high permittivity and/or permeability substrates for highly directive planar metamaterial antennas , 2007 .

[132]  Zhuomin M. Zhang Nano/Microscale Heat Transfer , 2007 .

[133]  A. G. Cullis,et al.  The structural and luminescence properties of porous silicon , 1997 .

[134]  P.A. Belov,et al.  On the low-frequency spatial dispersion in wire media , 2005, IWAT 2005. IEEE International Workshop on Antenna Technology: Small Antennas and Novel Metamaterials, 2005..

[135]  Sailing He,et al.  Antennas based on modified metallic photonic bandgap structures consisting of capacitively loaded wires , 2001 .

[136]  Sergei A. Tretyakov,et al.  Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range , 2008 .

[137]  S. Tretyakov,et al.  Strong spatial dispersion in wire media in the very large wavelength limit , 2002, cond-mat/0211204.

[138]  O. Luukkonen,et al.  Effects of Spatial Dispersion on Reflection From Mushroom-Type Artificial Impedance Surfaces , 2008, IEEE Transactions on Microwave Theory and Techniques.

[139]  G. Wiederrecht,et al.  Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. , 2011, Nature nanotechnology.

[140]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[141]  Zhaowei Liu,et al.  Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects , 2007, Science.

[142]  S. Kawata,et al.  Subwavelength optical imaging through a metallic nanorod array. , 2005, Physical review letters.

[143]  Zhaowei Liu,et al.  Design, fabrication and characterization of indefinite metamaterials of nanowires , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[144]  Alessandro Salandrino,et al.  Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations , 2006 .

[145]  V. B. Belyanin,et al.  Optics and Spectroscopy , 1960, Nature.

[146]  J. Pendry,et al.  Low frequency plasmons in thin-wire structures , 1998 .

[147]  J. Pendry,et al.  Collective Theory for Surface Enhanced Raman Scattering. , 1996, Physical review letters.

[148]  Bodo Fuhrmann,et al.  Surface-enhanced fluorescence from metal sculptured thin films with application to biosensing in water , 2009 .

[149]  Ceji Fu,et al.  Unusual photon tunneling in the presence of a layer with a negative refractive index , 2002 .

[150]  Paolo Burghignoli,et al.  Highly Polarized, Directive Radiation From a Fabry-Pérot Cavity Leaky-Wave Antenna Based on a Metal Strip Grating , 2010, IEEE Transactions on Antennas and Propagation.

[151]  Ion Tiginyanu,et al.  Pores in III–V Semiconductors , 2003 .