Metaheuristics for the bi-objective orienteering problem

In this paper, heuristic solution techniques for the multi-objective orienteering problem are developed. The motivation stems from the problem of planning individual tourist routes in a city. Each point of interest in a city provides different benefits for different categories (e.g., culture, shopping). Each tourist has different preferences for the different categories when selecting and visiting the points of interests (e.g., museums, churches). Hence, a multi-objective decision situation arises. To determine all the Pareto optimal solutions, two metaheuristic search techniques are developed and applied. We use the Pareto ant colony optimization algorithm and extend the design of the variable neighborhood search method to the multi-objective case. Both methods are hybridized with path relinking procedures. The performances of the two algorithms are tested on several benchmark instances as well as on real world instances from different Austrian regions and the cities of Vienna and Padua. The computational results show that both implemented methods are well performing algorithms to solve the multi-objective orienteering problem.

[1]  Fred W. Glover,et al.  Multi-objective Meta-heuristics for the Traveling Salesman Problem with Profits , 2008, J. Math. Model. Algorithms.

[2]  Bruce L. Golden,et al.  A fast and effective heuristic for the orienteering problem , 1996 .

[3]  M. Hansen,et al.  Evaluating the quality of approximations to the non-dominated set , 1998 .

[4]  Richard F. Hartl,et al.  Pareto ant colony optimization with ILP preprocessing in multiobjective project portfolio selection , 2006, Eur. J. Oper. Res..

[5]  T. Tsiligirides,et al.  Heuristic Methods Applied to Orienteering , 1984 .

[6]  F. Glover,et al.  Handbook of Metaheuristics , 2019, International Series in Operations Research & Management Science.

[7]  J. K. Lenstra,et al.  Local Search in Combinatorial Optimisation. , 1997 .

[8]  Alain Hertz,et al.  Metaheuristics for the team orienteering problem , 2005, J. Heuristics.

[9]  Carlos M. Fonseca,et al.  Inferential Performance Assessment of Stochastic Optimisers and the Attainment Function , 2001, EMO.

[10]  Xavier Gandibleux,et al.  A survey and annotated bibliography of multiobjective combinatorial optimization , 2000, OR Spectr..

[11]  Martin W. P. Savelsbergh,et al.  10. Vehicle routing: handling edge exchanges , 2003 .

[12]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[13]  Richard F. Hartl,et al.  Ant Colony Optimization in Multiobjective Portfolio Selection , 2001 .

[14]  Richard F. Hartl,et al.  Pareto Ant Colony Optimization: A Metaheuristic Approach to Multiobjective Portfolio Selection , 2004, Ann. Oper. Res..

[15]  Manuel López-Ibáñez,et al.  Ant colony optimization , 2010, GECCO '10.

[16]  Jason R. Schott Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization. , 1995 .

[17]  Lorraine R. Gardiner,et al.  A Bibliographic Survey of the Activities and International Nature of Multiple Criteria Decision Making , 1996 .

[18]  Dirk Van Oudheusden,et al.  A guided local search metaheuristic for the team orienteering problem , 2009, Eur. J. Oper. Res..

[19]  Luca Maria Gambardella,et al.  Ant colony system: a cooperative learning approach to the traveling salesman problem , 1997, IEEE Trans. Evol. Comput..

[20]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[21]  G. Croes A Method for Solving Traveling-Salesman Problems , 1958 .

[22]  X. Gandibleux,et al.  Approximative solution methods for multiobjective combinatorial optimization , 2004 .

[23]  Michel Gendreau,et al.  Traveling Salesman Problems with Profits , 2005, Transp. Sci..

[24]  Bruce L. Golden,et al.  The team orienteering problem , 1996 .

[25]  Pierre Hansen,et al.  Variable Neighborhood Search , 2018, Handbook of Heuristics.

[26]  Richard F. Hartl,et al.  Nature-inspired metaheuristics for multiobjective activity crashing , 2008 .

[27]  G. V. Berghe,et al.  A Greedy Randomised Adaptive Search Procedure for the Team Orienteering Problem , 2008 .

[28]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[29]  Marco Dorigo,et al.  The ant colony optimization meta-heuristic , 1999 .

[30]  R. Hartl,et al.  Solving a Bi-objective Flowshop Scheduling Problem by Pareto-Ant Colony Optimization , 2006, ANTS Workshop.

[31]  Lothar Thiele,et al.  A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers , 2006 .

[32]  Thomas Stützle,et al.  Ant Colony Optimization and Swarm Intelligence , 2008 .

[33]  Fred Glover,et al.  Scatter Search and Path Relinking: Advances and Applications , 2003, Handbook of Metaheuristics.

[34]  Thomas Stützle,et al.  Ant Colony Optimization , 2009, EMO.

[35]  Karl F. Doerner,et al.  Multicriteria tour planning for mobile healthcare facilities in a developing country , 2007, Eur. J. Oper. Res..

[36]  Francisco Herrera,et al.  A taxonomy and an empirical analysis of multiple objective ant colony optimization algorithms for the bi-criteria TSP , 2007, Eur. J. Oper. Res..

[37]  Xavier Gandibleux,et al.  Local Search Guided by Path Relinking and Heuristic Bounds , 2006, EMO.

[38]  Riccardo Poli,et al.  New ideas in optimization , 1999 .

[39]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.