The application of deconvolution methods in electron spectroscopy — a review

Abstract In this review of the application of deconvolution in electron spectroscopy the operations of convolution and deconvolution are first defined. The theoretical background to direct methods, Fourier Transform techniques and iterative approaches to deconvolution is given. The use of smoothing techniques, the removal of secondary electron background and the determination of broadening functions are then considered. Examples of deconvolution in electron spectroscopy are discussed. These include valence and core levels in XPS, gas-phase UPS studies and resolution enhancement in Auger spectroscopy. Deconvolution of Auger spectra to yield density of states curves is examined. The likely future status of deconvolution in electron spectroscopy is considered.

[1]  J. Houston,et al.  Correction of distortions in spectral line profiles: Applications to electron spectroscopies , 1976 .

[2]  Peter J. Statham,et al.  Deconvolution and background subtraction by least-squares fitting with prefiltering of spectra , 1977 .

[3]  G. Amelio Band structure of silicon by characteristic auger electron spectrum analysis , 1970 .

[4]  J. Houston,et al.  Auger electron spectroscopic investigation of the transition density of states for lithium , 1977 .

[5]  Deconvolution and smoothing: Applications in ESCA , 1975 .

[6]  M. Lagally,et al.  Transition density of states for Si(100) from L1L23V and L23VV Auger spectra , 1977 .

[7]  D. A. Shirley,et al.  High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold , 1972 .

[8]  J. C. Decius,et al.  Numerical methods for the correction of apparent band shapes due to finite slit width , 1962 .

[9]  Shigeo Minami,et al.  An Analysis of the Iterative Method for Deconvolving Spectroscopic Data Containing a Random Noise , 1973 .

[10]  R. S. Bauer,et al.  Multiple Oxidation States of Al Observed by Photoelectron Spectroscopy of Substrate Core Level Shifts , 1976 .

[11]  X-ray photoemission of valence electrons in cuprous halides, and lead and cadmium iodides. , 1974 .

[12]  J. W. Gadzuk Valence-Band Auger-Electron Spectra for Aluminum | NIST , 1974 .

[13]  A. Bradshaw,et al.  On the Soft X‐Ray Appearance Potential Spectrum of Graphite and Less Well‐ordered Carbons , 1973 .

[14]  G. E. Becker,et al.  Energy-Level Spectra of Electrons at the (111), (110), and (100) Surfaces of Silicon and Germanium by Ion-Neutralization Spectroscopy , 1973 .

[15]  Smoothing and Resolution Enhancement of Photoelectron Spectra with the Aid of a Programmable Desk Calculator , 1976 .

[16]  D. L. Misell,et al.  A practical method for the deconvolution of experimental curves , 1967 .

[17]  R. Dromey,et al.  An On-Line Ultraviolet Photoelectron Spectrometer for High-Resolution Studies of Molecular Structure , 1975 .

[18]  R. J. Lovell,et al.  Infrared spectrum of hydrogen fluoride: line positions and line shapes. Part II. Treatment of data and results , 1962 .

[19]  R. W. Joyner,et al.  Iterative deconvolution of X-ray photoelectron spectra generated by an achromatic source , 1978 .

[20]  S. Hüfner,et al.  Core-line asymmetries in the x-ray-photoemission spectra of metals , 1975 .

[21]  J. Houston Valence−band structure in the Auger spectrum of aluminum , 1975 .

[22]  T. Ishii,et al.  X-Ray Photoelectron Study of the Valence Bands in Cuprous Halides , 1972 .

[23]  S. Doniach,et al.  X-ray photoemission spectroscopy , 1974, Nature.

[24]  J. Matthew,et al.  Quasi-atomic fine structure in the Auger spectra of solid silver and indium , 1973 .

[25]  P. Jansson Method for Determining the Response Function of a High-Resolution Infrared Spectrometer* , 1970 .

[26]  R. Dixon,et al.  High-resolution photoelectron spectroscopy of methanol and its deuterated derivatives: Internal rotation in the ground ionic state , 1977 .

[27]  J. D. Morrison On the Optimum Use of Ionization‐Efficiency Data , 1963 .

[28]  L. Galan,et al.  Evaluation of a method for real-time deconvolution , 1974 .

[29]  S. Hüfner,et al.  XPS valence band spectra of Nb3Sn, Nb and Sn , 1976 .

[30]  C. Caroli,et al.  Inelastic Effects in Photoemission: Microscopic Formulation and Qualitative Discussion , 1973 .

[31]  H. Gladney,et al.  Resolution Enhancement for Spectra of Chemical and Physical Interest , 1964 .

[32]  L. Åsbrink,et al.  On the Photoelectron Spectrum of O2 , 1970 .

[33]  R. Bracewell,et al.  Aerial Smoothing in Radio Astronomy , 1954 .

[34]  J. Houston Dynamic background subtraction and the retrieval of threshold signals , 1974 .

[35]  W. D. Schneider Advanced Data-Analysis with an Esca-36 Spectrometer , 1977 .

[36]  A. Hardy,et al.  Correction of slit-width errors , 1949 .

[37]  P. Jansson,et al.  Response Function for Spectral Resolution Enhancement , 1968 .

[38]  N. Beatham,et al.  The application of Fourier transform techniques to the problem of deconvolution in photoelectron spectroscopy , 1976 .

[39]  Conduction band densities of states as determined by 40.81 eV photoelectron spectroscopy , 1974 .

[40]  Novel smoothing algorithm , 1975 .

[41]  P. Ho,et al.  Deconvolution method for composition profiling by Auger sputtering technique , 1976 .

[42]  A. Savitzky,et al.  Smoothing and Differentiation of Data by Simplified Least Squares Procedures. , 1964 .

[43]  Deconvolution techniques in Auger electron spectroscopy , 1971 .