Fixed-Parameter Algorithms for Protein Similarity Search Under mRNA Structure Constraints

In the context of protein engineering, we consider the problem of computing an mRnA sequence of maximal codon-wise similarity to a given mRnA (and consequently, to a given protein) that additionally satisfies some secondary structure constraints, the so-called MRSO problem [2]. Since the MRSO problem is known to be APX-hard [8], Bongartz proposed in [8] to attack the problem using the concept of parameterized complexity. In this paper we follow this suggested approach by devising fixed-parameter algorithms for several interesting parameters of MRSO. We believe these algorithms to be relevant for practical applications today, as well as for several future applications. Furthermore, our results extend the known tractability borderline of MRSO, and provide new research horizons for further improvements of this sort.

[1]  Maciej M. Syslo,et al.  Characterizations of outerplanar graphs , 1979, Discret. Math..

[2]  Paul C. Kainen,et al.  The book thickness of a graph , 1979, J. Comb. Theory, Ser. B.

[3]  S. Mitchell Linear algorithms to recognize outerplanar and maximal outerplanar graphs , 1979 .

[4]  Charles J. Colbourn,et al.  Steiner trees, partial 2-trees, and minimum IFI networks , 1983, Networks.

[5]  Fillia Makedon,et al.  Topological Bandwidth , 1983, CAAP.

[6]  Akira Nakamura,et al.  On the NP-hardness of edge-deletion and -contraction problems , 1983, Discret. Appl. Math..

[7]  David S. Johnson,et al.  Crossing Number is NP-Complete , 1983 .

[8]  H. Varmus,et al.  Expression of the Rous sarcoma virus pol gene by ribosomal frameshifting. , 1985, Science.

[9]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[10]  H. Bodlaender Classes of graphs with bounded tree-width , 1986 .

[11]  Ivan Hal Sudborough,et al.  Min Cut is NP-Complete for Edge Weigthed Trees , 1986, ICALP.

[12]  H. Varmus,et al.  Characterization of ribosomal frameshifting in HIV-1 gag-pol expression , 1988, Nature.

[13]  Paul D. Seymour,et al.  Graphs with small bandwidth and cutwidth , 1989, Discret. Math..

[14]  Mihalis Yannakais,et al.  Embedding planar graphs in four pages , 1989, STOC 1989.

[15]  Sumio Masuda,et al.  Crossing Minimization in Linear Embeddings of Graphs , 1990, IEEE Trans. Computers.

[16]  A. Böck,et al.  Selenoprotein synthesis: an expansion of the genetic code. , 1991, Trends in biochemical sciences.

[17]  Lenwood S. Heath Edge coloring planar graphs with two outerplanar subgraphs , 1991, SODA '91.

[18]  Ephraim Korach,et al.  Tree-Width, Path-Widt, and Cutwidth , 1993, Discret. Appl. Math..

[19]  Michael R. Fellows,et al.  Parameterized complexity analysis in computational biology , 1995, Comput. Appl. Biosci..

[20]  Goos Kant,et al.  On Triangulating Planar Graphs under the Four-Connectivity Constraint , 1994, Algorithmica.

[21]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[22]  Patricia A. Evans Finding Common Subsequences with Arcs and Pseudoknots , 1999, CPM.

[23]  Bin Ma,et al.  The Longest Common Subsequence Problem for Arc-Annotated Sequences , 2000, CPM.

[24]  Tatsuya Akutsu,et al.  Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots , 2000, Discret. Appl. Math..

[25]  Christian N. S. Pedersen,et al.  RNA Pseudoknot Prediction in Energy-Based Models , 2000, J. Comput. Biol..

[26]  Todd Wareham,et al.  Exact Algorithms for Computing Pairwise Alignments and 3-Medians From Structure-Annotated Sequences (Extended Abstract) , 2001, Pacific Symposium on Biocomputing.

[27]  Rolf Niedermeier,et al.  Towards Optimally Solving the LONGEST COMMON SUBSEQUENCE Problem for Sequences with Nested Arc Annotations in Linear Time , 2002, CPM.

[28]  Zhi-Zhong Chen,et al.  The longest common subsequence problem for sequences with nested arc annotations , 2002, J. Comput. Syst. Sci..

[29]  Rolf Backofen,et al.  On the Complexity of Protein Similarity Search under mRNA Structure Constraints , 2002, STACS.

[30]  Rolf Niedermeier,et al.  Pattern Matching for Arc-Annotated Sequences , 2002, FSTTCS.

[31]  R. Backofen,et al.  Protein similarity search under mRNA structural constraints: application to targeted selenocysteine insertion. , 2002, In silico biology.

[32]  Siu-Ming Yiu,et al.  Predicting RNA Secondary Structures with Arbitrary Pseudoknots by Maximizing the Number of Stacking Pairs , 2003, J. Comput. Biol..

[33]  Rolf Backofen,et al.  Computational Design of New and Recombinant Selenoproteins , 2004, CPM.

[34]  Dirk Bongartz Some Notes on the Complexity of Protein Similarity Search under mRNA Structure Constraints , 2004, SOFSEM.

[35]  Maria J. Serna,et al.  Cutwidth II: Algorithms for partial w-trees of bounded degree , 2005, J. Algorithms.