Dynamic theory of growth in groups: Entropy, boundaries, examples

This paper deals with the following topics. 1) Numerical invariants of countable groups (entropy, logarithmic volume, and drift); the fundamental inequality relating these invariants, and comparison of generating sets on the basis of this inequality; Monte Carlo generation of groups. 2) An ergodic method for constructing and studying the boundaries of random walks, the entropy of the boundary polymorphism, and their relationship to the fundamental inequality. 3) A geometric realization of free soluble groups, their boundaries, and a geometric approach to the construction of normal forms in groups. 4) Local and locally free groups and calculation of constants for these groups. 5) Entropy in measure theory and in the theory of dynamical systems; new notions of entropy of a decreasing sequence of measurable partitions and secondary entropy of K-automorphisms.

[1]  F. Ledrappier Some asymptotic properties of random walks on free groups , 2001 .

[2]  W. Woess Random walks on infinite graphs and groups, by Wolfgang Woess, Cambridge Tracts , 2001 .

[3]  An example of the rate of growth for a random walk on a group , 1999 .

[4]  S. Nechaev,et al.  On the limiting power of the set of knots generated by 1+1- and 2+1-braids , 1998, math/9807149.

[5]  S. V. Savchenko,et al.  Thermodynamic formalism for countable symbolic Markov chains , 1998 .

[6]  V. Kaimanovich The Poisson formula for groups with hyperbolic properties , 1998, math/9802132.

[7]  B. Derrida,et al.  Exact Large Deviation Function in the Asymmetric Exclusion Process , 1998, cond-mat/9809044.

[8]  N. Moshchevitin On a theorem of M. Hall , 1997 .

[9]  Tatiana Nagnibeda,et al.  Complete growth functions of hyperbolic groups , 1997 .

[10]  Yuval Peres,et al.  Cutpoints and Exchangeable Events for Random Walks , 1997 .

[11]  Rostislav Grigorchuk,et al.  On problems related to growth, entropy, and spectrum in group theory , 1997 .

[12]  A. Vershik,et al.  A new approach to representation theory of symmetric groups , 1996 .

[13]  L. Dubins,et al.  Decreasing sequences of $\sigma$-fields and a measure change for Brownian motion. II , 1996 .

[14]  U. Haagerup,et al.  Composition of subfactors : New examples of infinite depth subfactors , 1996 .

[15]  V. Kaimanovich The Poisson boundary of covering Markov operators , 1995 .

[16]  V. Kaimanovich Boundaries Of Invariant Markov Operators: The Identification Problem , 1995 .

[17]  H. Masur,et al.  The Poisson boundary of the mapping class group , 1996 .

[18]  D. J. Collins Relations among the squares of the generators of the braid group , 1994 .

[19]  Stephen P. Humphries On Representations of Artin Groups and the Tits Conjecture , 1994 .

[20]  V. M. Petrogradskiĭ COMMUNICATIONS OF THE MOSCOW MATHEMATICAL SOCIETY: On some types of intermediate growth in Lie algebras , 1993 .

[21]  L. Saloff-Coste,et al.  Analysis and Geometry on Groups: The heat kernel on unimodular Lie groups , 1993 .

[22]  A. Shiryayev New Metric Invariant of Transitive Dynamical Systems and Automorphisms of Lebesgue Spaces , 1993 .

[23]  D. Bisch Entropy of groups and subfactors , 1992 .

[24]  V. Kaimanovich Measure-Theoretic Boundaries of Markov Chains, 0–2 Laws and Entropy , 1992 .

[25]  Reduction of nonholonomic variation problems to isoperimetric ones and connections in principal bundles , 1991 .

[26]  G. Willis Probability measures on groups and some related ideals in group algebras , 1990 .

[27]  G. Viennot Heaps of Pieces, I: Basic Definitions and Combinatorial Lemmas , 1989 .

[28]  Peter Gerl Random walks on graphs , 1986 .

[29]  N. Varopoulos,et al.  Long range estimates for markov chains , 1985 .

[30]  Robert J. Zimmer,et al.  Ergodic Theory and Semisimple Groups , 1984 .

[31]  Vadim A. Kaimanovich,et al.  Random Walks on Discrete Groups: Boundary and Entropy , 1983 .

[32]  G. Viennot,et al.  Problèmes combinatoires posés par la physique statistique , 1983 .

[33]  S. Kalikow,et al.  T, T-1 transformation is not loosely Bernoulli* , 1982 .

[34]  M. Gromov Groups of polynomial growth and expanding maps , 1981 .

[35]  Benjamin Weiss,et al.  An amenable equivalence relation is generated by a single transformation , 1981, Ergodic Theory and Dynamical Systems.

[36]  N. Martin,et al.  Mathematical Theory of Entropy , 1981 .

[37]  A. Katok MONOTONE EQUIVALENCE IN ERGODIC THEORY , 1977 .

[38]  D. Ornstein Ergodic theory, randomness, and dynamical systems , 1974 .

[39]  R. Bowen TOPOLOGICAL ENTROPY FOR NONCOMPACT SETS , 1973 .

[40]  Wolfgang Krieger On unique ergodicity , 1972 .

[41]  Meir Smorodinsky,et al.  Ergodic Theory Entropy , 1971 .

[42]  A. M. Stepin On entropy invariants of decreasing sequences of measurable partitions , 1971 .

[43]  E. Dynkin THE SPACE OF EXITS OF A MARKOV PROCESS , 1969 .

[44]  F. Greenleaf,et al.  Invariant means on topological groups and their applications , 1969 .

[45]  Pierre Cartier,et al.  Problemes combinatoires de commutation et rearrangements , 1969 .

[46]  V. Rokhlin LECTURES ON THE ENTROPY THEORY OF MEASURE-PRESERVING TRANSFORMATIONS , 1967 .

[47]  P. Billingsley,et al.  Ergodic theory and information , 1966 .

[48]  A. Garsia Entropy and singularity of infinite convolutions. , 1963 .

[49]  H. Furstenberg Noncommuting random products , 1963 .

[50]  Peter M. Neumann,et al.  Wreath products and varieties of groups , 1962 .

[51]  V. Rokhlin NEW PROGRESS IN THE THEORY OF TRANSFORMATIONS WITH INVARIANT MEASURE , 1960 .

[52]  Harry Kesten,et al.  Symmetric random walks on groups , 1959 .