Accurate evaluation of a polynomial in Chebyshev form

This paper presents a compensated algorithm to accurately evaluate a polynomial expressed in Chebyshev basis of the first and second kind with floating-point coefficients. The principle is to apply error-free transformations to improve the traditional Clenshaw algorithm. The new algorithm is as accurate as the Clenshaw algorithm performed in twice the working precision. Forward error analysis and numerical experiments illustrate the accuracy and properties of the proposed algorithm.

[1]  James Demmel,et al.  Design, implementation and testing of extended and mixed precision BLAS , 2000, TOMS.

[2]  W. Morven Gentleman,et al.  An error analysis of Goertzel's (Watt's) method for computing Fourier coefficients , 1969, Comput. J..

[3]  D. Elliott Error analysis of an algorithm for summing certain finite series , 1968, Journal of the Australian Mathematical Society.

[4]  P. Deufihard,et al.  On algorithms for the summation of certain special functions , 1976, Computing.

[5]  James Hardy Wilkinson,et al.  The evaluation of the zeros of ill-conditioned polynomials. Part I , 1959, Numerische Mathematik.

[6]  Michael-Ralf Skrzipek,et al.  Polynomial evaluation and associated polynomials , 1998 .

[7]  T. Hasegawa Error Analysis of Clenshaw's Algorithm for Evaluating Derivatives of a Polynomial , 2001 .

[8]  T. J. Dekker,et al.  A floating-point technique for extending the available precision , 1971 .

[9]  Siegfried M. Rump,et al.  Accurate Sum and Dot Product , 2005, SIAM J. Sci. Comput..

[10]  Stef Graillat,et al.  Accurate Floating-Point Product and Exponentiation , 2009, IEEE Transactions on Computers.

[11]  The use of Richardson extrapolation in one-step methods with variable step size , 1966 .

[12]  S. Oishi,et al.  ACCURATE FLOATING-POINT SUMMATION , 2005 .

[13]  Siegfried M. Rump,et al.  Accurate Floating-Point Summation Part II: Sign, K-Fold Faithful and Rounding to Nearest , 2008, SIAM J. Sci. Comput..

[14]  Stef Graillat,et al.  Accurate simple zeros of polynomials in floating point arithmetic , 2008, Comput. Math. Appl..

[15]  Xiaoye S. Li,et al.  Algorithms for quad-double precision floating point arithmetic , 2000, Proceedings 15th IEEE Symposium on Computer Arithmetic. ARITH-15 2001.

[16]  C. W. Clenshaw A note on the summation of Chebyshev series , 1955 .

[17]  Hong Zhang,et al.  NUMERICAL CONDITION OF POLYNOMIALS IN DIFFERENT FORMS , 2001 .

[18]  Juan Manuel Peña,et al.  Basis conversions among univariate polynomial representations , 2004 .

[19]  Alicja Smoktunowicz,et al.  Backward Stability of Clenshaw's Algorithm , 2002 .

[20]  Siegfried M. Rump,et al.  Accurate Floating-Point Summation Part I: Faithful Rounding , 2008, SIAM J. Sci. Comput..

[21]  Philippe Langlois,et al.  Algorithms for accurate, validated and fast polynomial evaluation , 2009 .

[22]  Roberto Barrio Gil A matrix analysis of the stability of the Clenshaw algorithm , 1998 .

[23]  J. Oliver,et al.  An Error Analysis of the Modified Clenshaw Method for Evaluating Chebyshev and Fourier Series , 1977 .

[24]  J. Oliver,et al.  Rounding error propagation in polynomial evaluation schemes , 1979 .

[25]  Philippe Langlois,et al.  How to Ensure a Faithful Polynomial Evaluation with the Compensated Horner Algorithm , 2007, 18th IEEE Symposium on Computer Arithmetic (ARITH '07).

[26]  James Hardy Wilkinson,et al.  Rounding errors in algebraic processes , 1964, IFIP Congress.

[27]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[28]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[29]  Mei Han An,et al.  accuracy and stability of numerical algorithms , 1991 .

[30]  Roberto Barrio A Unified Rounding Error Bound for Polynomial Evaluation , 2003, Adv. Comput. Math..

[31]  Roberto Barrio,et al.  Rounding error bounds for the Clenshaw and Forsythe algorithms for the evaluation of orthogonal polynomial series , 2002 .

[32]  Donald E. Knuth The Art of Computer Programming 2 / Seminumerical Algorithms , 1971 .

[33]  W. Gautschi Questions of Numerical Condition Related to Polynomials , 1978 .

[34]  Peter Linz,et al.  Accurate floating-point summation , 1970, CACM.

[35]  Lizhi Cheng,et al.  Accurate evaluation of a polynomial and its derivative in Bernstein form , 2010, Comput. Math. Appl..

[36]  Philippe Langlois,et al.  Compensated Horner Scheme , 2005, Algebraic and Numerical Algorithms and Computer-assisted Proofs.

[37]  Philippe Langlois,et al.  More Instruction Level Parallelism Explains the Actual Efficiency of Compensated Algorithms , 2007 .