Deducing the multidimensional Szemerédi theorem from an infinitary removal lemma
暂无分享,去创建一个
[1] W. T. Gowers,et al. Hypergraph regularity and the multidimensional Szemerédi theorem , 2007, 0710.3032.
[2] H. Furstenberg,et al. An ergodic Szemerédi theorem for commuting transformations , 1978 .
[3] Bryna Kra,et al. Convergence of Conze–Lesigne averages , 2001, Ergodic Theory and Dynamical Systems.
[4] Bryna Kra,et al. Nonconventional ergodic averages and nilmanifolds , 2005 .
[5] Tamar Ziegler,et al. Universal characteristic factors and Furstenberg averages , 2004, math/0403212.
[6] H. Furstenberg. Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions , 1977 .
[7] Tim Austin. On the norm convergence of non-conventional ergodic averages , 2008, Ergodic Theory and Dynamical Systems.
[8] B. Host. Ergodic seminorms for commuting transformations and applications , 2008, 0811.3703.
[9] Nikos Frantzikinakis,et al. Convergence of multiple ergodic averages for some commuting transformations , 2004, Ergodic Theory and Dynamical Systems.
[10] Q. Zhang. On convergence of the averages $$\frac{1}{N}\sum\nolimits_{n = 1}^N {f_1 (R^n x)f_2 (S^n x)f_3 (T^n x)} $$ , 1996 .
[11] Eli Glasner,et al. Ergodic Theory via Joinings , 2003 .
[12] Terence Tao,et al. Norm convergence of multiple ergodic averages for commuting transformations , 2007, Ergodic Theory and Dynamical Systems.
[13] V. Rödl,et al. The counting lemma for regular k-uniform hypergraphs , 2006 .
[14] Terence Tao,et al. A Correspondence Principle between (hyper)graph Theory and Probability Theory, and the (hyper)graph Removal Lemma , 2006 .
[15] J. Conze,et al. Sur un théorème ergodique pour des mesures diagonales , 1988 .
[16] Vojtech Rödl,et al. The counting lemma for regular k‐uniform hypergraphs , 2006, Random Struct. Algorithms.