Optimization of blade cooling system with use of conjugate heat transfer approach

Abstract This paper discusses an optimization problem of internal cooling passages within a turbine blade with Conjugate Heat Transfer (CHT) analysis involved. However, to make the problem computationally feasible it was necessary to reduce the CHT predictions by fixing the external flow and solving the task for the interior only (solid and coolant). The optimization is done with an evolutionary algorithm within a 30 dimensional design space which use of the Pareto approach. Results showed more reliable thermal field predictions comparing to the classical approach and possible improvements in the design obtained.

[1]  Ronald S. Bunker,et al.  Axial Turbine Blade Tips: Function, Design, and Durability , 2006 .

[2]  Shinobu Yoshimura,et al.  Multidimensional Solution Clustering and Its Application to the Coolant Passage Optimization of a Turbine Blade , 2003, DAC 2003.

[3]  L. D. Hylton,et al.  Analytical and Experimental Evaluation of the Heat Transfer Distribution over the Surfaces of Turbine Vanes , 1983 .

[4]  Francesco Martelli,et al.  Conjugate Heat Transfer Modelling in Film Cooled Blades , 2004 .

[5]  George S. Dulikravich,et al.  Simultaneous Prediction of External Flow-Field and Temperature in Internally Cooled 3-D Turbine Blade Material , 2000 .

[6]  B. Lakshminarayana Fluid dynamics and heat transfer of turbomachinery , 1995 .

[7]  Grzegorz Nowak,et al.  Optimization of an airfoil cooling system using a Pareto dominance approach , 2010 .

[8]  Bruno Facchini,et al.  Conjugate Heat Transfer Simulation of a Radially Cooled Gas Turbine Vane , 2004 .

[9]  Włodzimierz Wróblewski,et al.  Cooling system optimisation of turbine guide vane , 2009 .

[10]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[11]  Andrea Haasenritter,et al.  Optimization of the Rib Structure Inside a 2D Cooling Channel , 2004 .

[12]  Tom Verstraete,et al.  Design and Optimization of the Internal Cooling Channels of a HP Turbine Blade: Part II—Optimization , 2008 .

[13]  George S. Dulikravich,et al.  Optimization of a Large Number of Coolant Passages Located Close to the Surface of a Turbine Blade , 2003 .

[14]  Sibylle D. Müller Bio-inspired optimization algorithms for engineering applications , 2002 .

[15]  R. Fedrizzi,et al.  Investigation of the Conjugate Convective-Conductive Thermal Behavior of a Rib-Roughened Internal Cooling Channel , 2004 .

[16]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[17]  F. Menter,et al.  Transition Modeling for General CFD Applications in Aeronautics , 2005 .

[18]  Jiang Luo,et al.  Conjugate heat transfer analysis of a cooled turbine vane using the V2F turbulence model , 2007 .

[19]  Włodzimierz Wróblewski,et al.  Thermo Mechanical Optimization of Cooled Turbine Vane , 2007 .

[20]  F. Menter Two-equation eddy-viscosity turbulence models for engineering applications , 1994 .

[21]  Karsten Kusterer,et al.  Conjugate Calculations for a Film-Cooled Blade Under Different Operating Conditions , 2004 .

[22]  Louis Gosselin,et al.  Review of utilization of genetic algorithms in heat transfer problems , 2009 .

[23]  Bengt Sundén,et al.  Heat Transfer in Gas Turbines , 2001 .

[24]  Mikio Sato,et al.  Conceptual Design and Cooling Blade Development of 1700°C Class High-Temperature Gas Turbine , 2005 .

[25]  J. Lienhard A heat transfer textbook , 1981 .

[26]  Vijay K. Garg,et al.  Heat transfer research on gas turbine airfoils at NASA GRC , 2002 .