Computing Tight Time Windows for RCPSPWET with the Primal-Dual Method

In this paper we combine OR and CP techniques to solve the Resource-Constrained Project Scheduling Problem with Earliness-Tardiness costs and general temporal constraints. Namely, we modify the Primal-Dual algorithm for solving the maximum-cost flow problem in a network to deduce tight time windows for activities with respect to a finite upper bound on the optimal objective function value. We compare our method to the only exact method in the literature. Our results show that time window computations and additional domain filtering techniques may improve the performance of tree-search based methods.

[1]  Francesca Rossi,et al.  Temporal Constraint Reasoning With Preferences , 2001, IJCAI.

[2]  Philippe Baptiste,et al.  Constraint-based scheduling , 2001 .

[3]  Wolfgang Domschke,et al.  Operations Research Proceedings 1999 , 2000 .

[4]  M. Wennink Algorithmic support for automated planning boards , 1995 .

[5]  Edward P. K. Tsang,et al.  Constraint Based Scheduling: Applying Constraint Programming to Scheduling Problems , 2003, J. Sched..

[6]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[7]  Wpm Wim Nuijten,et al.  Time and resource constrained scheduling : a constraint satisfaction approach , 1994 .

[8]  Tamás Kis,et al.  Primal-Dual Combined with Constraint Propagation for Solving RCPSPWET , 2005, OR.

[9]  Mark Wallace,et al.  Principles and Practice of Constraint Programming – CP 2004 , 2004, Lecture Notes in Computer Science.

[10]  Ulrich Dorndorf,et al.  Project Scheduling with Time Windows: From Theory to Applications , 2002 .

[11]  Peter Brucker,et al.  A branch and bound algorithm for the resource-constrained project scheduling problem , 1998, Eur. J. Oper. Res..

[12]  Jürgen Zimmermann,et al.  A steepest ascent approach to maximizing the net present value of projects , 2001, Math. Methods Oper. Res..

[13]  Bert De Reyck,et al.  A branch-and-bound procedure for the resource-constrained project scheduling problem with generalized precedence relations , 1998, Eur. J. Oper. Res..

[14]  Ulrich Dorndorf,et al.  Project Scheduling with Time Windows , 2002 .

[15]  J. Christopher Beck,et al.  A Hybrid Approach to Scheduling with Earliness and Tardiness Costs , 2003, Ann. Oper. Res..

[16]  Michel Gendreau,et al.  Multidisciplinary Scheduling: Theory and Applications , 2005 .

[17]  Dyneley Hussey,et al.  Annals of Opera , 1943 .

[18]  Philippe Baptiste,et al.  Constraint - based scheduling : applying constraint programming to scheduling problems , 2001 .

[19]  Erik Demeulemeester,et al.  A branch-and-bound procedure for the multiple resource-constrained project scheduling problem , 1992 .

[20]  Professor Dr. Klaus Neumann,et al.  Project Scheduling with Time Windows and Scarce Resources , 2003, Springer Berlin Heidelberg.

[21]  Christoph Schwindt Minimizing Earliness-Tardiness Costs of Resource-Constrained Projects , 2000 .

[22]  Erik Demeulemeester,et al.  An Exact Procedure for the Resource-Constrained Weighted Earliness–Tardiness Project Scheduling Problem , 2001, Ann. Oper. Res..

[23]  Lina Khatib,et al.  Strategies for Global Optimization of Temporal Preferences , 2004, CP.

[24]  T. K. Satish Kumar,et al.  Fast (Incremental) Algorithms for Useful Classes of Simple Temporal Problems with Preferences , 2007, IJCAI.

[25]  S. Selcuk Erenguc,et al.  A Branch and Bound Procedure for the Resource Constrained Project Scheduling Problem with Discounted Cash Flows , 1996 .