A tutorial on Chemical Reaction Networks dynamics

Chemical Reaction Networks (CRN for short) can be effectively modeled by means of nonlinear, parameter-dependent systems of ordinary differential equations. The uncertain knowledge of parameters makes for the need of qualitative tools which relate structure and dynamics of such nonlinear systems. We present an account of different results which allow to claim properties such as global asymptotic stability, persistence, monotonicity and existence of a unique equilibrium on the basis of graphical representations of the network.

[1]  F. Horn Necessary and sufficient conditions for complex balancing in chemical kinetics , 1972 .

[2]  Alexander N Gorban,et al.  Invariant grids for reaction kinetics , 2003 .

[3]  S. Schuster,et al.  A generalization of Wegscheider's condition. Implications for properties of steady states and for quasi-steady-state approximation , 1989 .

[4]  Gábor Szederkényi,et al.  Local dissipative Hamiltonian description of reversible reaction networks , 2008, Syst. Control. Lett..

[5]  Péter Érdi,et al.  Mathematical Models of Chemical Reactions: Theory and Applications of Deterministic and Stochastic Models , 1989 .

[6]  Martin Feinberg,et al.  Multiple Equilibria in Complex Chemical Reaction Networks: Ii. the Species-reactions Graph , 2022 .

[7]  Iliya V. Karlin,et al.  Method of invariant manifold for chemical kinetics , 2003 .

[8]  Madalena Chaves,et al.  Input-to-State Stability of Rate-Controlled Biochemical Networks , 2005, SIAM J. Control. Optim..

[9]  T. Kurtz The Relationship between Stochastic and Deterministic Models for Chemical Reactions , 1972 .

[10]  Upinder S Bhalla,et al.  Understanding complex signaling networks through models and metaphors. , 2003, Progress in biophysics and molecular biology.

[11]  Katalin M. Hangos,et al.  Thermodynamic approach to the structural stability of process plants , 1999 .

[12]  M Laurent,et al.  Multistability: a major means of differentiation and evolution in biological systems. , 1999, Trends in biochemical sciences.

[13]  R. Jackson,et al.  General mass action kinetics , 1972 .

[14]  G. Szederkényi Computing sparse and dense realizations of reaction kinetic systems , 2010 .

[15]  Gheorghe Craciun,et al.  Identifiability of chemical reaction networks , 2008 .

[16]  Gábor Szederkényi,et al.  Dynamic analysis and control of biochemical reaction networks , 2008, Math. Comput. Simul..

[17]  B. L. Clarke Stability of Complex Reaction Networks , 2007 .

[18]  David Angeli,et al.  Translation-invariant monotone systems, and a global convergence result for enzymatic futile cycles ☆ , 2008 .

[19]  Martin Feinberg,et al.  Multiple Equilibria in Complex Chemical Reaction Networks: I. the Injectivity Property * , 2006 .

[20]  Eduardo Sontag,et al.  A Petri Net Approach to Persistence Analysis in Chemical Reaction Networks , 2007 .

[21]  D. Gillespie The chemical Langevin equation , 2000 .

[22]  George Oster,et al.  Chemical reaction networks , 1974, Applications of Polynomial Systems.

[23]  G. Farkas,et al.  Kinetic lumping schemes , 1999 .

[24]  Eduardo Sontag,et al.  Modular cell biology: retroactivity and insulation , 2008, Molecular systems biology.

[25]  G. Wagner,et al.  The road to modularity , 2007, Nature Reviews Genetics.

[26]  Hal L. Smith,et al.  Monotone Dynamical Systems: An Introduction To The Theory Of Competitive And Cooperative Systems (Mathematical Surveys And Monographs) By Hal L. Smith , 1995 .