Rate of convergence estimates for nonselfadjoint eigenvalue approximations

Abstract : In the paper a general approximation theory for the eigenvalues and corresponding subspaces of generalized eigenfunctions of a certain class of compact operators is developed. This theory is then used to obtain rate of convergence estimates for the errors which arise when the eigenvalues of non-selfadjoint elliptic partial differential operators are approximated by Rayleigh-Ritz-Galerkin type methods using finite dimensional spaces of trial functions, e.g. spline functions. The approximation methods include several in which the functions in the space of trial functions are not required to satisfy any boundary conditions. (Author)

[1]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[2]  A. Weinstein Étude des spectres des équations aux dérivées partielles de la théorie des plaques élastiques , 1937 .

[3]  Existence, Convergence and Equivalence in the Unified Theory of Eigenvalues of Plates and Membranes. , 1941, Proceedings of the National Academy of Sciences of the United States of America.

[4]  R. J. Duffin,et al.  Lower Bounds for Eigenvalues , 1947 .

[5]  H. Weinberger Error estimation in the Weinstein method for eigenvalues , 1952 .

[6]  D. Fox,et al.  TRUNCATIONS IN THE METHOD OF INTERMEDIATE PROBLEMS FOR LOWER BOUNDS TO EIGENVALUES , 1961 .

[7]  D. Fox,et al.  A Procedure for Estimating Eigenvalues , 1962 .

[8]  A NECESSARY AND SUFFICIENT CONDITION IN THE MAXIMUM-MINIMUM THEORY OF EIGENVALUES , 1962 .

[9]  On $L^p$ Estimates and Regularity II. , 1963 .

[10]  M. Schechter On L p Estimates and Regularity, I , 1963 .

[11]  Asymptotic evaluations of the error of projection methods for the eigenvalue problem , 1964 .

[12]  E. Bright Wilson,et al.  Lower Bounds for Eigenvalues , 1965 .

[13]  C. D. Boor,et al.  Rayleigh-Ritz Approximation by Piecewise Cubic Polynomials , 1966 .

[14]  An Invariant Fomulation of the New Maximum-Minimum Theory of Eigenvalues , 1966 .

[15]  Tosio Kato Perturbation theory for linear operators , 1966 .

[16]  J. Osborn Approximation of the Eigenvalues of Non Self-Adjoint Operators , 1966 .

[17]  Approximation of the Eigenvalues of a Class of Unbounded, Nonself-Adjoint Operators , 1967 .

[18]  P. G. Ciarlet,et al.  Numerical methods of high-order accuracy for nonlinear boundary value Problems , 1968 .

[19]  G. M. Vainikko On the speed of convergence of approximate methods in the eigenvalue problem , 1967 .

[20]  Philippe G. Ciarlet,et al.  Numerical methods of high-order accuracy for nonlinear boundary value problems , 1968 .

[21]  J. Lions,et al.  Problèmes aux limites non homogènes et applications , 1968 .

[22]  Miloš Zlámal,et al.  On the finite element method , 1968 .

[23]  F. di Gugliemlo Construction d’approximations des espaces de sobolev sur des reseaux en simplexes , 1969 .

[24]  M. Schultz Rayleigh–Ritz–Galerkin Methods for Multidimensional Problems , 1969 .

[25]  J. Bramble,et al.  Rayleigh‐Ritz‐Galerkin methods for dirichlet's problem using subspaces without boundary conditions , 1970 .

[26]  J. Bramble,et al.  Triangular elements in the finite element method , 1970 .

[27]  Ivo Babuška,et al.  Approximation by Hill functions. II. , 1970 .

[28]  J. Bramble,et al.  Estimation of Linear Functionals on Sobolev Spaces with Application to Fourier Transforms and Spline Interpolation , 1970 .

[29]  James H. Bramble,et al.  Least squares methods for 2th order elliptic boundary-value problems , 1971 .

[30]  J. H. Bramble,et al.  Bounds for a class of linear functionals with applications to Hermite interpolation , 1971 .

[31]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[32]  A method for approximating the eigenvalues of non self-adjoint ordinary differential operators , 1971 .

[33]  Numerical methods for elliptic boundary problems , 1971 .

[34]  Gaetano Fichera FURTHER DEVELOPMENTS IN THE APPROXIMATION THEORY OF EIGENVALUES**This research has been sponsored in part by the Aerospace Research Laboratories through the European Office of Aerospace Research, OAR, United States Air Force, under Grant EOOAR 69-0066. , 1971 .

[35]  James H. Bramble,et al.  Least Squares Methods for 2mth Order Elliptic Boundary-Value Problems , 1971 .

[36]  Martin H. Schultz,et al.  L^2 Error Bounds for the Rayleigh--Ritz--Galerkin Method , 1971 .

[37]  Richard S. Varga,et al.  Higher Order Convergence Results for the Rayleigh–Ritz Method Applied to Eigenvalue Problems. I: Estimates Relating Rayleigh–Ritz and Galerkin Approximations to Eigenfunctions , 1972 .

[38]  P. G. Ciarlet,et al.  Interpolation theory over curved elements, with applications to finite element methods , 1972 .

[39]  Vidar Thomée,et al.  Projection methods for Dirichlet’s problem in approximating polygonal domains with boundary-value corrections , 1972 .

[40]  J. Nitsche,et al.  ON DIRICHLET PROBLEMS USING SUBSPACES WITH NEARLY ZERO BOUNDARY CONDITIONS , 1972 .

[41]  Richard S. Varga,et al.  Higher order convergence results for the Rayleigh-Ritz method applied to eigenvalue problems: 2. Improved error bounds for eigenfunctions , 1972 .

[42]  I. Babuska The finite element method with Lagrangian multipliers , 1973 .

[43]  M. Zlámal Curved Elements in the Finite Element Method. I , 1973 .

[44]  A. R. Mitchell,et al.  Curved elements in the finite element method , 1974 .