Modeling brain dynamics after tumor resection using The Virtual Brain

[1]  L. Schad,et al.  A generic support vector machine model for preoperative glioma survival associations. , 2015, Radiology.

[2]  Bibek Dhital,et al.  Gibbs‐ringing artifact removal based on local subvoxel‐shifts , 2015, Magnetic resonance in medicine.

[3]  H. Mehdorn,et al.  Comorbid mental disorders and psychosocial distress in patients with brain tumours and their spouses in the early treatment phase , 2011, Supportive Care in Cancer.

[4]  Daniele Marinazzo,et al.  Evaluating the performance of 3-tissue constrained spherical deconvolution pipelines for within-tumor tractography , 2019, bioRxiv.

[5]  Leonardo Bonilha,et al.  The brain connectome as a personalized biomarker of seizure outcomes after temporal lobectomy , 2015, Neurology.

[6]  Patrick C. Staples,et al.  Machine Learning and Neurosurgical Outcome Prediction: A Systematic Review. , 2018, World neurosurgery.

[7]  Jan Sijbers,et al.  Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data , 2014, NeuroImage.

[8]  Ben Jeurissen,et al.  Modeling Brain Dynamics in Brain Tumor Patients Using the Virtual Brain , 2018, eNeuro.

[9]  Cyril Pernet,et al.  Improved methods for making inferences about multiple skipped correlations , 2018, Journal of Statistical Computation and Simulation.

[10]  Xiaosong He,et al.  Presurgical thalamic “hubness” predicts surgical outcome in temporal lobe epilepsy , 2017, Neurology.

[11]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[12]  Josh Bongard,et al.  C L I N I C a L a R T I C L E , 2022 .

[13]  S. Cash,et al.  Predicting neurosurgical outcomes in focal epilepsy patients using computational modelling , 2016, Brain : a journal of neurology.

[14]  Timothy R. Smith,et al.  Natural and Artificial Intelligence in Neurosurgery: A Systematic Review , 2018, Neurosurgery.

[15]  Jan Sijbers,et al.  Denoising of diffusion MRI using random matrix theory , 2016, NeuroImage.

[16]  Dinggang Shen,et al.  Evaluation of machine learning algorithms for treatment outcome prediction in patients with epilepsy based on structural connectome data , 2015, NeuroImage.

[17]  M. Corbetta,et al.  How Local Excitation–Inhibition Ratio Impacts the Whole Brain Dynamics , 2014, The Journal of Neuroscience.

[18]  Ninon Burgos,et al.  New advances in the Clinica software platform for clinical neuroimaging studies , 2019 .

[19]  Viktor K. Jirsa,et al.  Individual brain structure and modelling predict seizure propagation , 2017, Brain : a journal of neurology.

[20]  Alan Connelly,et al.  Anatomically-constrained tractography: Improved diffusion MRI streamlines tractography through effective use of anatomical information , 2012, NeuroImage.

[21]  Gustavo Deco,et al.  Inferring multi-scale neural mechanisms with brain network modelling , 2017, bioRxiv.

[22]  Stefan Skare,et al.  How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging , 2003, NeuroImage.

[23]  Baard Nedregaard,et al.  Automatic glioma characterization from dynamic susceptibility contrast imaging: Brain tumor segmentation using knowledge‐based fuzzy clustering , 2009, Journal of magnetic resonance imaging : JMRI.

[24]  R. Levy,et al.  Advanced lesion symptom mapping analyses and implementation as BCBtoolkit , 2017, bioRxiv.

[25]  Petra Ritter,et al.  The Virtual Brain , 2013 .

[26]  M. Pellicoro,et al.  Conserved Ising Model on the Human Connectome , 2015, 1509.02697.

[27]  Michael A. Arbib,et al.  NATURAL AND ARTIFICIAL INTELLIGENCE , 1984 .

[28]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[29]  Linda Douw,et al.  Epilepsy surgery outcome and functional network alterations in longitudinal MEG: A minimum spanning tree analysis , 2014, NeuroImage.

[30]  Antônio Augusto Cançado Trindade Individual , 2019, Encyclopedia of Personality and Individual Differences.

[31]  R. C. Oldfield The assessment and analysis of handedness: the Edinburgh inventory. , 1971, Neuropsychologia.

[32]  Margaret Wrensch,et al.  Epidemiology of brain tumors. , 2007, Neurologic clinics.

[33]  E. Eakin,et al.  Quality of life among patients with a brain tumor and their carers. , 2007, Journal of psychosomatic research.

[34]  Stephen M. Smith,et al.  Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm , 2001, IEEE Transactions on Medical Imaging.

[35]  Stephen M. Smith,et al.  A global optimisation method for robust affine registration of brain images , 2001, Medical Image Anal..

[36]  M. Jenkinson Non-linear registration aka Spatial normalisation , 2007 .

[37]  A. Karim,et al.  Cognitive functions and quality of life in patients with low‐grade gliomas: The impact of radiotherapy , 1994, Annals of neurology.

[38]  Christian Windischberger,et al.  Toward discovery science of human brain function , 2010, Proceedings of the National Academy of Sciences.

[39]  Nikos Makris,et al.  Automatically parcellating the human cerebral cortex. , 2004, Cerebral cortex.

[40]  Mark W. Woolrich,et al.  Bayesian analysis of neuroimaging data in FSL , 2009, NeuroImage.

[41]  Stamatios N. Sotiropoulos,et al.  An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging , 2016, NeuroImage.

[42]  D Marinazzo,et al.  Ising model with conserved magnetization on the human connectome: Implications on the relation structure-function in wakefulness and anesthesia. , 2015, Chaos.

[43]  P. Chauvel,et al.  Role of resting state functional connectivity MRI in presurgical investigation of mesial temporal lobe epilepsy , 2010, Journal of Neurology, Neurosurgery & Psychiatry.

[44]  Olaf Sporns,et al.  Complex network measures of brain connectivity: Uses and interpretations , 2010, NeuroImage.

[45]  Zhou Yu,et al.  Altered brain anatomical networks and disturbed connection density in brain tumor patients revealed by diffusion tensor tractography , 2016, International Journal of Computer Assisted Radiology and Surgery.

[46]  Simona Olmi,et al.  Controlling seizure propagation in large-scale brain networks , 2018, bioRxiv.

[47]  Martin Klein,et al.  Cognitive deficits in adult patients with brain tumours , 2004, The Lancet Neurology.

[48]  Alan Connelly,et al.  SIFT: Spherical-deconvolution informed filtering of tractograms , 2013, NeuroImage.

[49]  B. Scheithauer,et al.  The 2007 WHO classification of tumours of the central nervous system , 2007, Acta Neuropathologica.

[50]  Anders M. Dale,et al.  An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest , 2006, NeuroImage.

[51]  Anthony R. McIntosh,et al.  The Virtual Brain: Modeling Biological Correlates of Recovery after Chronic Stroke , 2015, Front. Neurol..

[52]  S. Small,et al.  Virtual brain transplantation (VBT): a method for accurate image registration and parcellation in large cortical stroke. , 2010, Archives italiennes de biologie.

[53]  A. Connelly,et al.  Improved probabilistic streamlines tractography by 2 nd order integration over fibre orientation distributions , 2009 .

[54]  W. Liao,et al.  Connectome Reorganization Associated With Surgical Outcome in Temporal Lobe Epilepsy , 2015, Medicine.

[55]  Viktor K. Jirsa,et al.  The Virtual Brain Integrates Computational Modeling and Multimodal Neuroimaging , 2013, Brain Connect..

[56]  B. Harrison,et al.  Modulation of Brain Resting-State Networks by Sad Mood Induction , 2008, PloS one.

[57]  Viktor K. Jirsa,et al.  The Virtual Brain: a simulator of primate brain network dynamics , 2013, Front. Neuroinform..

[58]  Guillaume A Rousselet,et al.  A Guide to Robust Statistical Methods in Neuroscience , 2017, bioRxiv.

[59]  Ashwini Sharan,et al.  Presurgery resting‐state local graph‐theory measures predict neurocognitive outcomes after brain surgery in temporal lobe epilepsy , 2015, Epilepsia.

[60]  Chun-Hung Yeh,et al.  MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation , 2019, NeuroImage.

[61]  Gustavo Deco,et al.  Network dynamics with BrainX3: a large-scale simulation of the human brain network with real-time interaction , 2015, Front. Neuroinform..

[62]  M. A. Muñoz,et al.  A novel brain partition highlights the modular skeleton shared by structure and function , 2014, Scientific Reports.

[63]  J. Jolles,et al.  Effect of radiotherapy and other treatment-related factors on mid-term to long-term cognitive sequelae in low-grade gliomas: a comparative study , 2002, The Lancet.

[64]  Leonardo Bonilha,et al.  Presurgical connectome and postsurgical seizure control in temporal lobe epilepsy , 2013, Neurology.

[65]  H. Rolf Jäger,et al.  Enantiomorphic normalization of focally lesioned brains , 2008, NeuroImage.

[66]  C. Spielberger,et al.  Manual for the State-Trait Anxiety Inventory , 1970 .

[67]  Tom A. B. Snijders,et al.  Network Dynamics * , 2011 .

[68]  Bennett A Landman,et al.  Magnetic resonance imaging connectivity for the prediction of seizure outcome in temporal lobe epilepsy , 2017, Epilepsia.

[69]  S. Vos,et al.  The impact of epilepsy surgery on the structural connectome and its relation to outcome , 2017, NeuroImage: Clinical.

[70]  K. Lange,et al.  Cognitive deficits before treatment among patients with brain tumors. , 2000, Neurosurgery.