Computer microworlds and reading: An analysis for their systematic application

Learning can be seen as a consequence of problem solving in particular cases. It occurs when one achieves a solution which is able to be used later. “Anchoring with variation” is a common and important process, providing a framework through which one can discuss coping with something imperfectly understood in terms of what is already well known. Our purpose in the following discussion is to explore some possible implications of this process for reading education as a worked example of how educational technology presents us with an opportunity for reconceptualizing instruction.English has the phonological potential for more than 60 thousand monosyllables. Our analysis asks how many monosyllabic words exist in fact and what organization can be imposed on them to make the phonological code more accessible. We've chosen to represent these monosyllables as an initial phonemic cluster plus residue. The most common 550 residues cover 73 percent of the existing 7000 monosyllables. If children can learn 550 different correspondences between sounds and spelling patterns, their knowledge of these words, coupled with the ability to modify interpretations of letter strings by anchoring with variation, will cover a major portion of the phonetic-orthographic correspondences of the English language. We believe this extensive, concrete foundation of word and sound knowledge will permit children to read well enough that instruction will become primarily a refining and perfection of such knowledge.The primary design conclusion is that, if we create computer-based microworlds using words with the most common residues as the names for their entities and their actions, we will be providing a set of systematically generated monosyllabic anchors which promises to be highly effective for children's interpretation of many words they will encounter in reading English. The potential revolutionary impact of such a prereading curriculum is worth exploring.