State-space LPV model identification using kernelized machine learning

This paper presents a nonparametric method for identification of MIMO linear parameter-varying (LPV) models in state-space form. The states are first estimated up to a similarity transformation via a nonlinear canonical correlation analysis (CCA) operating in a reproducing kernel Hilbert space (RKHS). This enables to reconstruct a minimal-dimensional inference between past and future input, output and scheduling variables, making it possible to estimate a state sequence consistent with the data. Once the states are estimated, a least-squares support vector machine (LS-SVM)-based identification scheme is formulated, allowing to capture the dependency structure of the matrices of the estimated state-space model on the scheduling variables without requiring an explicit declaration of these often unknown dependencies; instead, it only requires the selection of nonlinear kernel functions and the tuning of the associated hyper-parameters.

[1]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[2]  Daniel E. Rivera,et al.  LPV system identification using a separable least squares support vector machines approach , 2014, 53rd IEEE Conference on Decision and Control.

[3]  Christopher K. I. Williams,et al.  Model Selection and Adaptation of Hyperparameters , 2005 .

[4]  Johan A. K. Suykens,et al.  Basic Methods of Least Squares Support Vector Machines , 2002 .

[5]  Javad Mohammadpour,et al.  A support vector machine-based method for LPV-ARX identification with noisy scheduling parameters , 2014, 2014 European Control Conference (ECC).

[6]  B. Moor,et al.  On the Regularization of Canonical Correlation Analysis , 2003 .

[7]  John Shawe-Taylor,et al.  Convergence analysis of kernel Canonical Correlation Analysis: theory and practice , 2008, Machine Learning.

[8]  van den Pmj Paul Hof,et al.  Identification of nonlinear process models in an LPV framework , 2010 .

[9]  R. Tóth,et al.  Nonparametric identification of LPV models under general noise conditions : an LS-SVM based approach , 2012 .

[10]  Wei Xing Zheng,et al.  Model structure learning: A support vector machine approach for LPV linear-regression models , 2011, IEEE Conference on Decision and Control and European Control Conference.

[11]  Javad Mohammadpour,et al.  An IV-SVM-based approach for identification of state-space LPV models under generic noise conditions , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[12]  Michel Verhaegen,et al.  Subspace identification of MIMO LPV systems using a periodic scheduling sequence , 2007, Autom..

[13]  J. Suykens,et al.  Least Squares Support Vector Machines for Kernel CCA in Nonlinear State-Space Identification , 2004 .

[14]  Michel Verhaegen,et al.  Subspace identification of Bilinear and LPV systems for open- and closed-loop data , 2009, Autom..

[15]  Felipe Cucker,et al.  On the mathematical foundations of learning , 2001 .

[16]  Bart De Moor,et al.  Choice of state-space basis in combined deterministic-stochastic subspace identification , 1995, Autom..

[17]  Roland Toth,et al.  Modeling and Identification of Linear Parameter-Varying Systems , 2010 .

[18]  Vincent Verdult,et al.  Kernel methods for subspace identification of multivariable LPV and bilinear systems , 2005, Autom..

[19]  Hossam Seddik Abbas,et al.  On the State-Space Realization of LPV Input-Output Models: Practical Approaches , 2012, IEEE Transactions on Control Systems Technology.

[20]  Michel Verhaegen,et al.  Subspace identification of multivariable linear parameter-varying systems , 2002, Autom..

[21]  Michael I. Jordan,et al.  Kernel independent component analysis , 2003 .

[22]  Bassam Bamieh,et al.  Identification of linear parameter varying models , 2002 .

[23]  Javad Mohammadpour,et al.  A Kernel-based Approach to MIMO LPV State-space Identification and Application to a Nonlinear Process System , 2015 .