An Asymptotic Isoperimetric Inequality

Abstract. For a finite metric space V with a metric $ \rho $, let V n be the metric space in which the distance between (a1, . . ., an) and (b1, . . ., bn) is the sum $ \sum^{n}_{i = 1} \rho (a_i, b_i) $. We obtain an asymptotic formula for the logarithm of the maximum possible number of points in V n of distance at least d from a set of half the points of V n, when n tends to infinity and d satisfies $ d \gg \sqrt {n} $.

[1]  Jeff Kahn,et al.  Asymptotically Good List-Colorings , 1996, J. Comb. Theory A.

[2]  S. Varadhan Large Deviations and Applications , 1984 .

[3]  Zoltán Füredi,et al.  A short proof for a theorem of Harper about Hamming-spheres , 1981, Discret. Math..

[4]  M. Talagrand Concentration of measure and isoperimetric inequalities in product spaces , 1994, math/9406212.

[5]  W. Stout Almost sure convergence , 1974 .

[6]  Christian Houdré,et al.  Variance of Lipschitz functions and an isoperimetric problem for a class of product measures , 1996 .

[7]  I. A. Ibragimov,et al.  Uniform limit theorems for sums of independent random variables , 1988 .

[8]  Rudolf Ahlswede,et al.  Identification via compressed data , 1997, IEEE Trans. Inf. Theory.

[9]  Noga Alon,et al.  Constructive Bounds for a Ramsey-Type Problem , 1997, Graphs Comb..

[10]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[11]  G. Pisier ASYMPTOTIC THEORY OF FINITE DIMENSIONAL NORMED SPACES (Lecture Notes in Mathematics 1200) , 1987 .

[12]  W. Feller,et al.  An Introduction to Probability Theory and Its Applications. Vol. 1, Second Edition. , 1958 .

[13]  H. F. Bohnenblust,et al.  GAMES WITH CONTINUOUS, CONVEX PAY-OFF , 1949 .

[14]  Colin McDiarmid,et al.  Surveys in Combinatorics, 1989: On the method of bounded differences , 1989 .

[15]  Noga Alon,et al.  lambda1, Isoperimetric inequalities for graphs, and superconcentrators , 1985, J. Comb. Theory, Ser. B.

[16]  D. Stroock An Introduction to the Theory of Large Deviations , 1984 .

[17]  Frank E. Grubbs,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[18]  Jeong Han Kim,et al.  Nearly perfect matchings in regular simple hypergraphs , 1997 .

[19]  P. A. P. Moran,et al.  An introduction to probability theory , 1968 .

[20]  Béla Bollobás,et al.  An Isoperimetric Inequality on the Discrete Torus , 1990, SIAM J. Discret. Math..

[21]  K. Engel Sperner Theory , 1996 .

[22]  L. H. Harper Optimal numberings and isoperimetric problems on graphs , 1966 .

[23]  V. Milman,et al.  Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .

[24]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[25]  Béla Bollobás,et al.  Compressions and isoperimetric inequalities , 1990, J. Comb. Theory, Ser. A.

[26]  Konrad Engel,et al.  Optimal Representations of Partially Ordered Sets and a Limit Sperner Theorem , 1986, Eur. J. Comb..