Biodiesel production from genetically engineered microalgae: Future of bioenergy in Iran

Current biomass sources for energy production in Iran include sewerage as well as agricultural, animal, food industry and municipal solid wastes, and are anticipated to account for about 14% of national energy consumption in near future. However, due to the considerable progress made in genetic engineering of various plants in Iran during the last decade and the great potentials of microalgae for biofuel production, these photosynthetic organisms could be nominated as the future source of bioenergy in Iran. An overview of status of bioenergy in the world and Iran as well as the potential and utilization of biomass in Iran is presented. The possibilities of increasing biofuel production through microalgal genetic engineering and the progress made so far are discussed. Biodiesel in the Iran and its future prospective is also reviewed, emphasizing the promising role of microalgae.

[1]  Elizabeth H. Harris,et al.  Further characterization of the respiratory deficient dum-1 mutation of Chlamydomonas reinhardtii and its use as a recipient for mitochondrial transformation , 2004, Molecular and General Genetics MGG.

[2]  R. Samson,et al.  Plant-water relationships and growth strategies of Jatropha curcas L. seedlings under different levels of drought stress , 2009 .

[3]  Jonathan C. Cohen,et al.  Expression of ABCG5 and ABCG8 Is Required for Regulation of Biliary Cholesterol Secretion* , 2005, Journal of Biological Chemistry.

[4]  O. Pulz,et al.  Photobioreactors: production systems for phototrophic microorganisms , 2001, Applied Microbiology and Biotechnology.

[5]  Paul Chen,et al.  Review of biological and engineering aspects of algae to fuels approach , 2009 .

[6]  Meisam Tabatabaei,et al.  Upstream and downstream strategies to economize biodiesel production. , 2011, Bioresource technology.

[7]  Y. Chisti,et al.  Recovery of microalgal biomass and metabolites: process options and economics. , 2003, Biotechnology advances.

[8]  Gertraud Burger,et al.  Plasticity of a key metabolic pathway in fungi , 2009, Functional & Integrative Genomics.

[9]  Rainer Fischer,et al.  Recombinant-antibody-mediated resistance against Tomato yellow leaf curl virus in Nicotiana benthamiana , 2009, Archives of Virology.

[10]  René H. Wijffels,et al.  Ultrasound, a new separation technique to harvest microalgae , 2003, Journal of Applied Phycology.

[11]  Richard T. Sayre,et al.  Growth and Heavy Metal Binding Properties of Transgenic Chlamydomonas Expressing a Foreign Metallothionein Gene , 1999 .

[12]  Naoko Ellis,et al.  Perspectives on biodiesel as a sustainable fuel , 2010 .

[13]  Gholamhassan Najafi,et al.  Potential of bioethanol production from agricultural wastes in Iran , 2009 .

[14]  Giuseppe Torzillo,et al.  MICROALGAL BIOMASS DRYING BY A SIMPLE SOLAR DEVICE , 1997 .

[15]  G Charles Dismukes,et al.  Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. , 2008, Current opinion in biotechnology.

[16]  A. Grossman,et al.  Trophic Conversion of an Obligate Photoautotrophic Organism Through Metabolic Engineering , 2001, Science.

[17]  Nu Sustainable bioenergy: a framework for decision makers , 2007 .

[18]  Kazuhiro Nagahama,et al.  Construction and analysis of a recombinant cyanobacterium expressing a chromosomally inserted gene for an ethylene-forming enzyme at the psbAI locus. , 2003, Journal of bioscience and bioengineering.

[19]  Mohammad Ali Malboobi,et al.  Enhanced resistance to a lepidopteran pest in transgenic sugar beet plants expressing synthetic cry1Ab gene , 2008, Euphytica.

[20]  O. Pulz,et al.  Valuable products from biotechnology of microalgae , 2004, Applied Microbiology and Biotechnology.

[21]  M. Haas Improving the economics of biodiesel production through the use of low value lipids as feedstocks: vegetable oil soapstock , 2005 .

[22]  P. Colepicolo,et al.  Metabolites from algae with economical impact. , 2007, Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.

[23]  E. Grotewold Transcription factors for predictive plant metabolic engineering: are we there yet? , 2008, Current opinion in biotechnology.

[24]  J. Rochaix,et al.  The argininosuccinate lyase gene of Chlamydomonas reinhardtii: an important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus. , 1989, The EMBO journal.

[25]  M. Mittelbach,et al.  Jatropha curcas L. as a source for the production of biofuel in Nicaragua , 1996 .

[26]  Hamid Rajabi Memari,et al.  Production and characterization of anti‐(mucin MUC1) single‐domain antibody in tobacco (Nicotiana tabacum cultivar Xanthi) , 2007, Biotechnology and applied biochemistry.

[27]  P. Lefebvre,et al.  Isolation and characterization of the nitrate reductase structural gene of Chlamydomonas reinhardtii. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Robert E. Jinkerson,et al.  Genetic Engineering of Algae for Enhanced Biofuel Production , 2010, Eukaryotic Cell.

[29]  B. Singh,et al.  Advancements in development and characterization of biodiesel: A review , 2008 .

[30]  V. Lumbreras,et al.  Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron , 1998 .

[31]  G. Hannon,et al.  A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. , 2007, Genes & development.

[32]  M. Chalfie,et al.  Green fluorescent protein as a marker for gene expression. , 1994, Science.

[33]  Richard T. Sayre,et al.  Molecular Mechanisms of Proline-Mediated Tolerance to Toxic Heavy Metals in Transgenic Microalgae , 2002, The Plant Cell Online.

[34]  Teresa M. Mata,et al.  Microalgae for biodiesel production and other applications: A review , 2010 .

[35]  Masoud Tohidfar,et al.  Agrobacterium -mediated transformation of cotton (Gossypium hirsutum) using a heterologous bean chitinase gene , 2005, Plant Cell, Tissue and Organ Culture.

[36]  Dunahay Tg,et al.  Transformation of Chlamydomonas reinhardtii with silicon carbide whiskers. , 1993 .

[37]  A. Richmond,et al.  Microalgal biotechnology at the turn of the millennium: A personal view , 2000, Journal of Applied Phycology.

[38]  M. Rasaee,et al.  Expression and characterization of a recombinant single-domain monoclonal antibody against MUC1 mucin in tobacco plants. , 2006, Hybridoma.

[39]  A. Carvalho,et al.  Microalgal Reactors: A Review of Enclosed System Designs and Performances , 2006, Biotechnology progress.

[40]  J. W. Peters,et al.  Engineering algae for biohydrogen and biofuel production. , 2009, Current opinion in biotechnology.

[41]  R. Morais,et al.  Spray-drying of Dunaliella salina to produce a β-carotene rich powder , 1998, Journal of Industrial Microbiology and Biotechnology.

[42]  Christoph Benning,et al.  Annotation of Genes Involved in Glycerolipid Biosynthesis in Chlamydomonas reinhardtii: Discovery of the Betaine Lipid Synthase BTA1Cr , 2005, Eukaryotic Cell.

[43]  K. Apt,et al.  COMMERCIAL DEVELOPMENTS IN MICROALGAL BIOTECHNOLOGY , 1999 .

[44]  R. Divakaran,et al.  Flocculation of algae using chitosan , 2002, Journal of Applied Phycology.

[45]  Y. Chisti Biodiesel from microalgae. , 2007, Biotechnology advances.

[46]  C. N. Stewart,et al.  Overexpression of an Arabidopsis thaliana ABC transporter confers kanamycin resistance to transgenic plants , 2005, Nature Biotechnology.

[47]  K. Kindle High-frequency nuclear transformation of Chlamydomonas reinhardtii. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Q. Hu,et al.  Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. , 2008, The Plant journal : for cell and molecular biology.

[49]  Eric E. Jarvis,et al.  Manipulation of microalgal lipid production using genetic engineering , 1996 .

[50]  Wouter Achten,et al.  Jatropha: From global hype to local opportunity , 2010 .

[51]  Huiyun Chang,et al.  Foot-and-mouth disease virus VP1 protein fused with cholera toxin B subunit expressed in Chlamydomonas reinhardtii chloroplast , 2003, Biotechnology Letters.

[52]  Hélène Desmorieux,et al.  Convective drying of Spirulina in thin layer , 2005 .

[53]  Rashmi,et al.  Prospects of biodiesel production from microalgae in India , 2009 .

[54]  A. Darzins,et al.  The promise and challenges of microalgal‐derived biofuels , 2009 .

[55]  Dion Matthew Frederick Frampton,et al.  Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds , 2006 .

[56]  James R. Knight,et al.  Genome sequencing in microfabricated high-density picolitre reactors , 2005, Nature.

[57]  T. Janvilisri,et al.  Sterol Transport by the Human Breast Cancer Resistance Protein (ABCG2) Expressed in Lactococcus lactis* , 2003, Journal of Biological Chemistry.

[58]  T M Klein,et al.  Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. , 1988, Science.

[59]  Richard T. Sayre,et al.  Engineering the Chloroplast Encoded Proteins of Chlamydomonas , 2004, Photosynthesis Research.

[60]  Daniel Chaumont,et al.  Biotechnology of algal biomass production: a review of systems for outdoor mass culture , 1993, Journal of Applied Phycology.

[61]  Yusuf Chisti,et al.  Biotechnology-a sustainable alternative for chemical industry. , 2005, Biotechnology advances.

[62]  S. Purton,et al.  Tools for chloroplast transformation in Chlamydomonas: expression vectors and a new dominant selectable marker , 2000, Molecular and General Genetics MGG.

[63]  D. Rader,et al.  Hepatic overexpression of microsomal triglyceride transfer protein (MTP) results in increased in vivo secretion of VLDL triglycerides and apolipoprotein B. , 1999, Journal of lipid research.

[64]  S. Fukui,et al.  Isolation and characterization of triacylglycerol-secreting mutant strain from yeast, Saccharomyces cerevisiae. , 1999, The Journal of general and applied microbiology.

[65]  Atsushi Takagaki,et al.  Green chemistry: Biodiesel made with sugar catalyst , 2005, Nature.

[66]  R. Loppes,et al.  Expression of the arylsulphatase reporter gene under the control of the nit1 promoter in Chlamydomonas reinhardtii , 1997, Current Genetics.

[67]  V. S. Reddy,et al.  Genetic transformation of the green alga: Chlamydomonas reinhardtii by Agrobacterium tumefaciens , 2004 .

[68]  Masoud Tohidfar,et al.  Evaluation of stability of chitinase gene in transgenic offspring of cotton (Gossypium hirsutum) , 2009 .

[69]  A. Grossman,et al.  In vivo characterization of diatom multipartite plastid targeting signals , 2002, Journal of Cell Science.

[70]  A. Demirbas,et al.  Comparison of transesterification methods for production of biodiesel from vegetable oils and fats. , 2008 .

[71]  M. Schroda,et al.  The HSP70A promoter as a tool for the improved expression of transgenes in Chlamydomonas. , 2000, The Plant journal : for cell and molecular biology.

[72]  N. Sato,et al.  Upregulation of PG synthesis on sulfur-starvation for PS I in Chlamydomonas. , 2008, Biochemical and biophysical research communications.

[73]  Gholamreza Salehi Jouzani,et al.  Genetic Engineering of Crop Plants for Enhanced Resistance to Insects and Diseases in Iran , 2008 .

[74]  Masoud Tohidfar,et al.  Enhanced insect resistance to bollworm ( Helicoverpa armigera ) in cotton containing a synthetic cry1Ab gene , 2009 .

[75]  Emilio Fernández,et al.  Nitrate signalling on the nitrate reductase gene promoter depends directly on the activity of the nitrate transport systems in Chlamydomonas. , 2002, The Plant journal : for cell and molecular biology.

[76]  C. Lan,et al.  Biofuels from Microalgae , 2008, Biotechnology progress.

[77]  Gharahyazi Behzad,et al.  AGROBACTERIUM-MEDIATED TRANSFORMATION OF COTTON USING A CHITINASE GENE , 2005 .

[78]  Kazuhisa Ono,et al.  Extracellular secretion of free fatty acids by disruption of a fatty acyl-CoA synthetase gene in Saccharomyces cerevisiae. , 2003, Journal of bioscience and bioengineering.

[79]  Yuan-Kun Lee Microalgal mass culture systems and methods: Their limitation and potential , 2001, Journal of Applied Phycology.

[80]  David J. Miller,et al.  Genetic transformation of dinoflagellates (Amphidinium and Symbiodinium): expression of GUS in microalgae using heterologous promoter constructs , 1998 .

[81]  M. Lapuerta,et al.  Correlation for the estimation of the cetane number of biodiesel fuels and implications on the iodine number , 2009 .

[82]  R. Howard-Hildige,et al.  The effect of steam treating waste cooking oil on the yield of methyl ester , 2002 .

[83]  J. Cronan,et al.  Overproduction of Acetyl-CoA Carboxylase Activity Increases the Rate of Fatty Acid Biosynthesis in Escherichia coli * , 2000, The Journal of Biological Chemistry.

[84]  C. K. Tseng,et al.  Algal biotechnology industries and research activities in China , 2001, Journal of Applied Phycology.

[85]  Michael C. Walsh,et al.  Modification of Brassica napus seed oil by expression of the Escherichia coli fabH gene, encoding 3-ketoacyl-acyl carrier protein synthase III , 1995, Plant Molecular Biology.

[86]  Gharahyazi Behzad,et al.  Agrobacterium-mediated transformation of cotton (Gossypium hirsutum) using a synthetic cry1Ab gene for enhanced resistance against Heliothis armigera , 2008 .

[87]  D. Shi,et al.  Exploitation of Oil-bearing Microalgae for Biodiesel , 2008 .

[88]  Judith Gurney BP Statistical Review of World Energy , 1985 .

[89]  H. Kojima,et al.  Photosynthetic microorganisms in environmental biotechnology , 2001 .

[90]  Peter Hegemann,et al.  Monitoring dynamic expression of nuclear genes in Chlamydomonas reinhardtii by using a synthetic luciferase reporter gene , 2004, Plant Molecular Biology.

[91]  A. Melis,et al.  Green alga hydrogen production: progress, challenges and prospects , 2002 .

[92]  Brant C. White,et al.  United States patent , 1985 .

[93]  P. Benfey,et al.  Tissue‐specific expression from CaMV 35S enhancer subdomains in early stages of plant development. , 1990, The EMBO journal.

[94]  Wirulda Pootakham,et al.  Genetic Interactions Between Regulators of Chlamydomonas Phosphorus and Sulfur Deprivation Responses , 2009, Genetics.

[95]  Juming Tang,et al.  Refractance Window Dehydration Technology: A Novel Contact Drying Method , 2007 .

[96]  E. S. Piruzian,et al.  Comparative study of the expression of the native, modified, and hybrid cry3a genes of Bacillus thuringiensis in prokaryotic and eukaryotic cells , 2005, Russian Journal of Genetics.

[97]  D. R. Stevens,et al.  The bacterial phleomycin resistance geneble as a dominant selectable marker inChlamydomonas , 1996, Molecular and General Genetics MGG.

[98]  M. Fuhrmann,et al.  Expanding the molecular toolkit for Chlamydomonas reinhardtii--from history to new frontiers. , 2002, Protist.

[99]  Chris Bowler,et al.  Revealing the molecular secrets of marine diatoms. , 2002, Annual review of plant biology.

[100]  H. Raheman,et al.  Prediction of optimized pretreatment process parameters for biodiesel production using ANN and GA , 2009 .

[101]  I. Goldenkova,et al.  Expression of hybrid cry3aM–licBM2 genes in transgenic potatoes (Solanum tuberosum) , 2008, Plant Cell, Tissue and Organ Culture.

[102]  Michael Seibert,et al.  Continuous hydrogen photoproduction by Chlamydomonas reinhardtii , 2005, Applied biochemistry and biotechnology.

[103]  H. Cerutti,et al.  A eubacterial gene conferring spectinomycin resistance on Chlamydomonas reinhardtii: integration into the nuclear genome and gene expression. , 1997, Genetics.

[104]  P. Roessler,et al.  Purification and Characterization of Acetyl-CoA Carboxylase from the Diatom Cyclotella cryptica. , 1990, Plant physiology.

[105]  Lei Zhang,et al.  Enhanced protein production by engineered zinc finger proteins , 2007, Biotechnology and bioengineering.

[106]  Gurdev S. Khush,et al.  Enhanced resistance to two stem borers in an aromatic rice containing a synthetic cryIA(b) gene , 1997, Molecular Breeding.

[107]  Gholamreza Salehi Jouzani,et al.  Transformation of Iranian Cotton Varieties Using Shoot Apex , 2009 .

[108]  C. Lan,et al.  CO2 bio-mitigation using microalgae , 2008, Applied Microbiology and Biotechnology.

[109]  J. Harwood,et al.  Lipids and lipid metabolism in eukaryotic algae. , 2006, Progress in lipid research.

[110]  F. Kargı,et al.  Bio-hydrogen production from waste materials , 2006 .

[111]  J. Ohlrogge,et al.  Targeting of the Arabidopsis Homomeric Acetyl-Coenzyme A Carboxylase to Plastids of Rapeseeds , 1997, Plant physiology.

[112]  Hélène Desmorieux,et al.  WITHDRAWN: Convective drying of Spirulina in thin layer , 2006 .

[113]  P. Spolaore,et al.  Commercial applications of microalgae. , 2006, Journal of bioscience and bioengineering.

[114]  P. Hegemann,et al.  A Streptomyces rimosus aphVIII gene coding for a new type phosphotransferase provides stable antibiotic resistance to Chlamydomonas reinhardtii. , 2001, Gene.

[115]  T. Efferth,et al.  Rapid microwave-assisted transesterification of yellow horn oil to biodiesel using a heteropolyacid solid catalyst. , 2010, Bioresource technology.

[116]  A. Grossman,et al.  High-efficiency transformation of Chlamydomonas reinhardtii by electroporation. , 1998, Genetics.

[117]  David Rotman The Price of Biofuels , 2008 .

[118]  O. Millamena,et al.  Techniques on algae harvesting and preservation for use in culture and as larval food , 1990 .

[119]  Miguel Olaizola,et al.  Commercial development of microalgal biotechnology: from the test tube to the marketplace. , 2003, Biomolecular engineering.

[120]  S. Purton,et al.  GENETIC ENGINEERING OF EUKARYGTIC ALGAE: PROGRESS AND PROSPECTS , 1997 .

[121]  M. Shariati,et al.  Microalgal biotechnology: Carotenoid and glycerol production by the green algae Dunaliella isolated from the Gave-Khooni salt marsh, Iran , 2008 .

[122]  S. Purton,et al.  Microalgae as bioreactors , 2005, Plant Cell Reports.

[123]  Mohammad Ali Malboobi,et al.  Selection of regenerative genotypes from Iranian alfalfa cultivars , 2009 .

[124]  R. Meints,et al.  Recombinant viruses as transformation vectors of marine macroalgae , 1994, Journal of Applied Phycology.

[125]  C. Posten,et al.  Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production , 2008, BioEnergy Research.

[126]  Richard A Lerner,et al.  Expression and assembly of a fully active antibody in algae , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[127]  Philip Owende,et al.  Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products , 2010 .

[128]  M. Huntley,et al.  CO2 Mitigation and Renewable Oil from Photosynthetic Microbes: A New Appraisal , 2007 .

[129]  D. Rader,et al.  Overexpression of Secretory Phospholipase A2 Causes Rapid Catabolism and Altered Tissue Uptake of High Density Lipoprotein Cholesteryl Ester and Apolipoprotein A-I* , 2000, The Journal of Biological Chemistry.

[130]  F B Metting,et al.  Biodiversity and application of microalgae , 1996, Journal of Industrial Microbiology.

[131]  Masoud Tohidfar,et al.  Zygosity identification in transgenic cotton (Gossypium hirsutum) by real-time quantitative PCR , 2010, Euphytica.

[132]  Y. Chisti,et al.  Botryococcus braunii: A Renewable Source of Hydrocarbons and Other Chemicals , 2002, Critical reviews in biotechnology.

[133]  Ali Keskin,et al.  Influence of tall oil biodiesel with Mg and Mo based fuel additives on diesel engine performance and emission. , 2008, Bioresource technology.

[134]  Naoko Ellis,et al.  Monitoring biodiesel production (transesterification) using in situ viscometer , 2008 .

[135]  Gaanty Pragas Maniam,et al.  Biodiesel production via transesterification of palm olein using waste mud crab (Scylla serrata) shell as a heterogeneous catalyst. , 2009, Bioresource technology.