Characterization of facet-breaking for nonsmooth mean curvature flow in the convex case

We investigate the breaking and bending phenomena of a facet of a three-dimensional crystal which evolves under crystalline mean curvature flow. We give necessary and sufficient conditions for a facet to be calibrable, i.e. not to break or bend under the evolution process. We also give a criterion which allows us to predict exactly where a subdivision of a non-calibrable facet takes place in the evolution process.

[1]  D. W. Hoffman,et al.  A vector thermodynamics for anisotropic surfaces II. Curved and faceted surfaces , 1974 .

[2]  F. Morgan Clusters minimizing area plus length of singular curves , 1994 .

[3]  Robert Finn,et al.  Equilibrium Capillary Surfaces , 1985 .

[4]  E. Giusti Minimal surfaces and functions of bounded variation , 1977 .

[5]  Jason Yunger Facet stepping and motion by crystalline curvature , 1998 .

[6]  F. Morgan The cone over the Clifford torus in R4 isΦ-minimizing , 1991 .

[7]  F. Morgan,et al.  Wulff clusters inR2 , 1998 .

[8]  J. Morel,et al.  Connected components of sets of finite perimeter and applications to image processing , 2001 .

[9]  M. Novaga,et al.  Facet-breaking for three-dimensional crystals evolving by mean curvature , 1999 .

[10]  Umberto Massari,et al.  Esistenza e regolarità delle ipersuperfici di curvatura media assegnata in Rn , 1974 .

[11]  Maurizio Paolini,et al.  Numerical simulation of crystalline curvature flow in 3D by interface diffusion , 2000 .

[12]  G. Anzellotti,et al.  Pairings between measures and bounded functions and compensated compactness , 1983 .

[13]  M. Novaga,et al.  On a Crystalline Variational Problem, Part I:¶First Variation and Global L∞ Regularity , 2001 .

[14]  I. Fonseca The Wulff theorem revisited , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[15]  E. Giusti On the equation of surfaces of prescribed mean curvature , 1978 .

[16]  Jennifer Cahn,et al.  A vector thermodlnamics for anisotropic surfaces—II. Curved and faceted surfaces , 1974 .

[17]  M. Gurtin Thermomechanics of Evolving Phase Boundaries in the Plane , 1993 .

[18]  J. Taylor,et al.  II—mean curvature and weighted mean curvature , 1992 .

[19]  Y. Giga,et al.  A comparison theorem for crystalline evolution in the plane , 1994 .

[20]  M. Novaga,et al.  On a Crystalline Variational Problem, Part II:¶BV Regularity and Structure of Minimizers on Facets , 2001 .

[21]  I. Tamanini,et al.  Boundaries of prescribed mean curvature , 1993 .