Numerical integration of functions with boundary singularities

Abstract In this paper we deal with the problem of constructing efficient rules for the numerical evaluation of integrals of functions which are very smooth everywhere in the domain of integration, except at the boundaries where they possess mild singularities. In particular, we consider integrals defined on bounded intervals or on triangles. Integrals of this type appear, for example, in the numerical solution of singular and weakly singular integral equations by boundary element methods.

[1]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[2]  George Szekeres,et al.  Numerical evaluation of high-dimensional integrals , 1964 .

[3]  Andreas Rathsfeld,et al.  Quadrature Methods for Strongly Elliptic Cauchy Singular Integral Equations on an Interval , 1989 .

[4]  Masao Iri,et al.  On a certain quadrature formula , 1987 .

[5]  Ronald Cools,et al.  A survey of numerical cubature over triangles , 1993 .

[6]  M. G. Duffy,et al.  Quadrature Over a Pyramid or Cube of Integrands with a Singularity at a Vertex , 1982 .

[7]  Polynomial approximations of functions with endpoint singularities and product integration formulas , 1994 .

[8]  M. Kütz Asymptotic Error Bounds for a Class of Interpolatory Quadratures , 1984 .

[9]  G. Monegato,et al.  Integral evaluation in the BEM solution of (hyper)singular integral equations. 2D problems on polygonal domains , 1997 .

[10]  Siegfried Prössdorf,et al.  An algorithm for the approximate solution of integral equations of Mellin type , 1995 .

[11]  Giovanni Monegato,et al.  Convergence properties of a class of product formulas for weakly singular integral equations , 1990 .

[12]  Giovanni Monegato,et al.  High order methods for weakly singular integral equations with nonsmooth input functions , 1998, Math. Comput..

[13]  David Elliott,et al.  Sigmoidal transformations and the Euler-Maclaurin expansion for evaluating certain Hadamard finite-part integrals , 1997 .

[14]  Rainer Kress,et al.  A Nyström method for boundary integral equations in domains with corners , 1990 .

[15]  Avram Sidi,et al.  A New Variable Transformation for Numerical Integration , 1993 .

[16]  Anny Haegemans,et al.  Transformation of Integrands for Lattice Rules , 1992 .

[17]  Masatake Mori,et al.  An IMT-Type Double Exponential Formula for Numerical Integration , 1978 .

[18]  J. N. Lyness On Handling Singularities in Finite Elements , 1992 .

[19]  Giovanni Monegato,et al.  New Numerical Integration Schemes for Applications of Galerkin Bem to 2-D Problems , 1997 .