Reconstructing the molecular life history of gliomas

[1]  Young Hwa Kim,et al.  Cellular senescence in cancer , 2019, BMB reports.

[2]  Benjamin J. Raphael,et al.  Neutral tumor evolution? , 2017, Nature Genetics.

[3]  Pieter Wesseling,et al.  cIMPACT-NOW update 2: diagnostic clarifications for diffuse midline glioma, H3 K27M-mutant and diffuse astrocytoma/anaplastic astrocytoma, IDH-mutant , 2018, Acta Neuropathologica.

[4]  Lucy F. Stead,et al.  Glioma through the looking GLASS: molecular evolution of diffuse gliomas and the Glioma Longitudinal Analysis Consortium , 2018, Neuro-oncology.

[5]  P. Wesseling,et al.  WHO 2016 Classification of gliomas , 2018, Neuropathology and applied neurobiology.

[6]  H. Duffau,et al.  Cellular and molecular characterization of IDH1‐mutated diffuse low grade gliomas reveals tumor heterogeneity and absence of EGFR/PDGFRα activation , 2018, Glia.

[7]  D. Louis,et al.  cIMPACT-NOW update 1: Not Otherwise Specified (NOS) and Not Elsewhere Classified (NEC) , 2018, Acta Neuropathologica.

[8]  Benjamin J. Raphael,et al.  The evolutionary history of 2,658 cancers , 2017, Nature.

[9]  X. Darzacq,et al.  Mutations in the promoter of the telomerase gene TERT contribute to tumorigenesis by a two-step mechanism , 2017, Science.

[10]  Steven J. M. Jones,et al.  Clonal expansion and epigenetic reprogramming following deletion or amplification of mutant IDH1 , 2017, Proceedings of the National Academy of Sciences.

[11]  Richard A. Moore,et al.  Fate mapping of human glioblastoma reveals an invariant stem cell hierarchy , 2017, Nature.

[12]  Marc J. Williams,et al.  Reply: Uncertainties in tumor allele frequencies limit power to infer evolutionary pressures , 2017, Nature Genetics.

[13]  William A. Flavahan,et al.  Epigenetic plasticity and the hallmarks of cancer , 2017, Science.

[14]  Edward F. Chang,et al.  Tumor Evolution of Glioma-Intrinsic Gene Expression Subtypes Associates with Immunological Changes in the Microenvironment. , 2017, Cancer cell.

[15]  Emanuel F Petricoin,et al.  Discordant inheritance of chromosomal and extrachromosomal DNA elements contributes to dynamic disease evolution in glioblastoma , 2018, Nature Genetics.

[16]  R. Verhaak,et al.  Multigene signature for predicting prognosis of patients with 1p19q co-deletion diffuse glioma , 2017, Neuro-oncology.

[17]  Shenghui He,et al.  Senescence in Health and Disease , 2017, Cell.

[18]  Jeffrey H. Chuang,et al.  Uncertainties in tumor allele frequencies limit power to infer evolutionary pressures , 2017, Nature Genetics.

[19]  S. Rossi,et al.  Dual-Genotype Diffuse Low-Grade Glioma: Is It Really Time to Abandon Oligoastrocytoma As a Distinct Entity? , 2017, Journal of neuropathology and experimental neurology.

[20]  Tom R. Gaunt,et al.  Association Between Telomere Length and Risk of Cancer and Non-Neoplastic Diseases: A Mendelian Randomization Study , 2017 .

[21]  In-Hee Lee,et al.  Spatiotemporal genomic architecture informs precision oncology in glioblastoma , 2017, Nature Genetics.

[22]  Hugues Sicotte,et al.  Genome-wide association study of glioma subtypes identifies specific differences in genetic susceptibility to glioblastoma and non-glioblastoma tumors , 2017, Nature Genetics.

[23]  Q. Pang,et al.  Overexpression of NIMA-related kinase 2 is associated with poor prognoses in malignant glioma , 2017, Journal of Neuro-Oncology.

[24]  H. Aburatani,et al.  Genetic and epigenetic stability of oligodendrogliomas at recurrence , 2017, Acta neuropathologica communications.

[25]  Jennie W. Taylor,et al.  Adult infiltrating gliomas with WHO 2016 integrated diagnosis: additional prognostic roles of ATRX and TERT , 2017, Acta Neuropathologica.

[26]  Richard C. Wang,et al.  Somatic mutations in telomerase promoter counterbalance germline loss-of-function mutations , 2017, The Journal of clinical investigation.

[27]  N. McGranahan,et al.  Clonal Heterogeneity and Tumor Evolution: Past, Present, and the Future , 2017, Cell.

[28]  Mariella G. Filbin,et al.  Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq , 2017, Science.

[29]  Xin Hu,et al.  Systematic analysis of telomere length and somatic alterations in 31 cancer types , 2017, Nature Genetics.

[30]  T. Lange,et al.  Telomeres in cancer: tumour suppression and genome instability , 2017, Nature Reviews Molecular Cell Biology.

[31]  Jessica M. Rusert,et al.  Extrachromosomal oncogene amplification drives tumor evolution and genetic heterogeneity , 2017, Nature.

[32]  Pieter Wesseling,et al.  Glioma: experimental models and reality , 2017, Acta Neuropathologica.

[33]  T. Tihan,et al.  Erratum to: The role of histone modifications and telomere alterations in the pathogenesis of diffuse gliomas in adults and children , 2017, Journal of Neuro-Oncology.

[34]  T. Perkins,et al.  Induction of senescence in primary glioblastoma cells by serum and TGFβ , 2017, Scientific Reports.

[35]  S. Rashid,et al.  Hallmarks of Cancer Cell , 2017 .

[36]  R. Bjerkvig,et al.  Rapid Conversion of Mutant IDH1 from Driver to Passenger in a Model of Human Gliomagenesis. , 2016, Molecular cancer research : MCR.

[37]  Mariella G. Filbin,et al.  Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma , 2016, Nature.

[38]  Gun Ho Jang,et al.  A renewed model of pancreatic cancer evolution based on genomic rearrangement patterns , 2016, Nature.

[39]  L. Chin,et al.  Extrachromosal DNA elements can drive disease evolution in glioblastoma , 2016 .

[40]  I. Tomlinson,et al.  Expression of Idh1R132H in the Murine Subventricular Zone Stem Cell Niche Recapitulates Features of Early Gliomagenesis , 2016, Cancer cell.

[41]  E. Susser,et al.  Telomere Length and the Cancer–Atherosclerosis Trade-Off , 2016, PLoS genetics.

[42]  I. Yeh Faculty Opinions recommendation of Cancer. The transcription factor GABP selectively binds and activates the mutant TERT promoter in cancer. , 2016 .

[43]  David T. W. Jones,et al.  Telomere dysfunction and chromothripsis , 2016, International journal of cancer.

[44]  In-Hee Lee,et al.  Clonal evolution of glioblastoma under therapy , 2016, Nature Genetics.

[45]  A. Sfeir,et al.  Stop pulling my strings — what telomeres taught us about the DNA damage response , 2016, Nature Reviews Molecular Cell Biology.

[46]  G. Reifenberger,et al.  The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary , 2016, Acta Neuropathologica.

[47]  I. Nakano,et al.  Senescence from glioma stem cell differentiation promotes tumor growth. , 2016, Biochemical and biophysical research communications.

[48]  Steven J. M. Jones,et al.  Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma , 2016, Cell.

[49]  Marc J. Williams,et al.  Identification of neutral tumor evolution across cancer types , 2016, Nature Genetics.

[50]  Shawn M. Gillespie,et al.  Insulator dysfunction and oncogene activation in IDH mutant gliomas , 2015, Nature.

[51]  A. Vortmeyer,et al.  Integrated genomic characterization of IDH1-mutant glioma malignant progression , 2015, Nature Genetics.

[52]  Pieter Wesseling,et al.  Histologic classification of gliomas. , 2016, Handbook of clinical neurology.

[53]  T. Tihan,et al.  The role of histone modifications and telomere alterations in the pathogenesis of diffuse gliomas in adults and children , 2016, Journal of Neuro-Oncology.

[54]  Peter J. Campbell,et al.  Chromothripsis and Kataegis Induced by Telomere Crisis , 2015, Cell.

[55]  Alexander R. Pico,et al.  Longer genotypically-estimated leukocyte telomere length is associated with increased adult glioma risk , 2015, Oncotarget.

[56]  Andreas Deutsch,et al.  Model-Based Evaluation of Spontaneous Tumor Regression in Pilocytic Astrocytoma , 2015, PLoS Comput. Biol..

[57]  Bert Vogelstein,et al.  The Path to Cancer --Three Strikes and You're Out. , 2015, The New England journal of medicine.

[58]  R. Dummer,et al.  The Genetic Evolution of Melanoma from Precursor Lesions. , 2015, The New England journal of medicine.

[59]  J. Eckel-Passow,et al.  Telomere maintenance and the etiology of adult glioma. , 2015, Neuro-oncology.

[60]  Melissa Bondy,et al.  Genome-wide association study identifies multiple susceptibility loci for glioma , 2022 .

[61]  P. Varlet,et al.  Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes , 2015, Acta Neuropathologica.

[62]  Susan Smith,et al.  Loss of ATRX Suppresses Resolution of Telomere Cohesion to Control Recombination in ALT Cancer Cells. , 2015, Cancer cell.

[63]  D. Higgs,et al.  Suppression of the alternative lengthening of telomere pathway by the chromatin remodelling factor ATRX , 2015, Nature Communications.

[64]  Steven J. M. Jones,et al.  Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. , 2015, The New England journal of medicine.

[65]  Alexander R. Pico,et al.  Glioma Groups Based on 1p/19q, IDH, and TERT Promoter Mutations in Tumors. , 2015, The New England journal of medicine.

[66]  N. Sharpless,et al.  Forging a signature of in vivo senescence , 2015, Nature Reviews Cancer.

[67]  J. Boyle,et al.  Cancer-associated TERT promoter mutations abrogate telomerase silencing , 2015, eLife.

[68]  Chibo Hong,et al.  The transcription factor GABP selectively binds and activates the mutant TERT promoter in cancer , 2015, Science.

[69]  Satoru Miyano,et al.  Mutational landscape and clonal architecture in grade II and III gliomas , 2015, Nature Genetics.

[70]  R. Reddel,et al.  ATRX represses alternative lengthening of telomeres , 2015, Oncotarget.

[71]  David T. W. Jones,et al.  Pilocytic astrocytoma: pathology, molecular mechanisms and markers , 2015, Acta Neuropathologica.

[72]  David T. W. Jones,et al.  Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers , 2015, Acta Neuropathologica.

[73]  Jill S Barnholtz-Sloan,et al.  Whole-genome and multisector exome sequencing of primary and post-treatment glioblastoma reveals patterns of tumor evolution , 2015, Genome research.

[74]  Jill S. Barnholtz-Sloan,et al.  CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2008-2012 , 2015, Neuro-oncology.

[75]  Volker Hovestadt,et al.  Histologically distinct neuroepithelial tumors with histone 3 G34 mutation are molecularly similar and comprise a single nosologic entity , 2015, Acta Neuropathologica.

[76]  M. Nowak,et al.  Only three driver gene mutations are required for the development of lung and colorectal cancers , 2014, Proceedings of the National Academy of Sciences.

[77]  Robert J Dempsey,et al.  Science Times , 2022 .

[78]  S. Antonarakis,et al.  Extrachromosomal driver mutations in glioblastoma and low grade glioma , 2014, Nature Communications.

[79]  K. Chin,et al.  Immortalization of normal human mammary epithelial cells in two steps by direct targeting of senescence barriers does not require gross genomic alterations , 2014, Cell cycle.

[80]  D. Johnston,et al.  Alternative lengthening of telomeres is enriched in, and impacts survival of TP53 mutant pediatric malignant brain tumors , 2014, Acta Neuropathologica.

[81]  T. Yeatman,et al.  Senescence-associated-gene signature identifies genes linked to age, prognosis, and progression of human gliomas. , 2014, Journal of geriatric oncology.

[82]  R. Verhaak,et al.  Spatial and temporal evolution of distal 10q deletion, a prognostically unfavorable event in diffuse low-grade gliomas , 2014, Genome Biology.

[83]  E. Hirsch,et al.  PI3K/AKT signaling pathway and cancer: an updated review , 2014, Annals of medicine.

[84]  Pieter Wesseling,et al.  International Society of Neuropathology‐Haarlem Consensus Guidelines for Nervous System Tumor Classification and Grading , 2014, Brain pathology.

[85]  Franziska Michor,et al.  Most human non-GCIMP glioblastoma subtypes evolve from a common proneural-like precursor glioma. , 2014, Cancer cell.

[86]  P. A. Pérez-Mancera,et al.  Inside and out: the activities of senescence in cancer , 2014, Nature Reviews Cancer.

[87]  Martin Sill,et al.  Assessing CpG island methylator phenotype, 1p/19q codeletion, and MGMT promoter methylation from epigenome-wide data in the biomarker cohort of the NOA-04 trial. , 2014, Neuro-oncology.

[88]  Alexander R. Pico,et al.  Variants near TERT and TERC influencing telomere length are associated with high-grade glioma risk , 2014, Nature Genetics.

[89]  Shawn M. Gillespie,et al.  Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma , 2014, Science.

[90]  David M. Thomas,et al.  Li-Fraumeni syndrome: cancer risk assessment and clinical management , 2014, Nature Reviews Clinical Oncology.

[91]  Amar Gajjar,et al.  The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma , 2014, Nature Genetics.

[92]  Stephen Yip,et al.  Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma , 2014, Nature Genetics.

[93]  Liliana Goumnerova,et al.  Recurrent somatic mutations in ACVR1 in pediatric midline high-grade astrocytoma , 2014, Nature Genetics.

[94]  Simon Kasif,et al.  Reconstructing and Reprogramming the Tumor-Propagating Potential of Glioblastoma Stem-like Cells , 2014, Cell.

[95]  Michael Brudno,et al.  Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations , 2014, Nature Genetics.

[96]  Zhifeng Shi,et al.  Loss of CIC and FUBP1 expressions are potential markers of shorter time to recurrence in oligodendroglial tumors , 2014, Modern Pathology.

[97]  David T. W. Jones,et al.  Paediatric and adult glioblastoma: multiform (epi)genomic culprits emerge , 2014, Nature Reviews Cancer.

[98]  Steven J. M. Jones,et al.  Mutational Analysis Reveals the Origin and Therapy-Driven Evolution of Recurrent Glioma , 2014, Science.

[99]  K. Aldape,et al.  Using the molecular classification of glioblastoma to inform personalized treatment , 2014, The Journal of pathology.

[100]  J. Barnholtz-Sloan,et al.  CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. , 2012, Neuro-oncology.

[101]  M. Rosenblum,et al.  Mixed glioma with molecular features of composite oligodendroglioma and astrocytoma: a true “oligoastrocytoma”? , 2014, Acta Neuropathologica.

[102]  C. Suter,et al.  Oligoastrocytomas: throwing the baby out with the bathwater? , 2014, Acta Neuropathologica.

[103]  David T. W. Jones,et al.  ATRX and IDH1-R132H immunohistochemistry with subsequent copy number analysis and IDH sequencing as a basis for an “integrated” diagnostic approach for adult astrocytoma, oligodendroglioma and glioblastoma , 2014, Acta Neuropathologica.

[104]  A. Mills,et al.  The tumor suppressor Chd5 is induced during neuronal differentiation in the developing mouse brain. , 2013, Gene expression patterns : GEP.

[105]  David T. W. Jones,et al.  Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas. , 2013, Cancer cell.

[106]  David Haussler,et al.  Double minute chromosomes in glioblastoma multiforme are revealed by precise reconstruction of oncogenic amplicons. , 2013, Cancer research.

[107]  S. Weiss,et al.  Spontaneous loss of heterozygosity leading to homozygous R132H in a patient-derived IDH1 mutant cell line. , 2013, Neuro-oncology.

[108]  Roland Eils,et al.  Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma , 2013, Nature Genetics.

[109]  T. Chan,et al.  MAPping the genomic landscape of low-grade pediatric gliomas , 2013, Nature Genetics.

[110]  Miguel Melo,et al.  Frequency of TERT promoter mutations in human cancers , 2013, Nature Communications.

[111]  Ken Chen,et al.  A survey of intragenic breakpoints in glioblastoma identifies a distinct subset associated with poor survival. , 2013, Genes & development.

[112]  T. Mak,et al.  Oncogenic isocitrate dehydrogenase mutations: mechanisms, models, and clinical opportunities. , 2013, Cancer discovery.

[113]  L. Attardi,et al.  Tumor Suppression: p53 Alters Immune Surveillance to Restrain Liver Cancer , 2013, Current Biology.

[114]  B. Garcia,et al.  Inhibition of PRC2 Activity by a Gain-of-Function H3 Mutation Found in Pediatric Glioblastoma , 2013, Science.

[115]  Ryan M. Layer,et al.  Breakpoint profiling of 64 cancer genomes reveals numerous complex rearrangements spawned by homology-independent mechanisms , 2013, Genome research.

[116]  Heather L. Mulder,et al.  Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas , 2013, Nature Genetics.

[117]  Darjus F. Tschaharganeh,et al.  Non-Cell-Autonomous Tumor Suppression by p53 , 2013, Cell.

[118]  K. Kinzler,et al.  Cancer Genome Landscapes , 2013, Science.

[119]  P. O’Reilly,et al.  Identification of seven loci affecting mean telomere length and their association with disease , 2013, Nature Genetics.

[120]  Gary L. Gallia,et al.  TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal , 2013, Proceedings of the National Academy of Sciences.

[121]  M. Preusser,et al.  Mutant BRAF V600E protein in ganglioglioma is predominantly expressed by neuronal tumor cells , 2013, Acta Neuropathologica.

[122]  D. Schadendorf,et al.  TERT Promoter Mutations in Familial and Sporadic Melanoma , 2013, Science.

[123]  V. P. Collins,et al.  Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics , 2013, Proceedings of the National Academy of Sciences.

[124]  Yun-chi Tang,et al.  Gene Copy-Number Alterations: A Cost-Benefit Analysis , 2013, Cell.

[125]  E. Shaw,et al.  Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term results of RTOG 9402. , 2013, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[126]  C. Horbinski To BRAF or Not to BRAF: Is That Even a Question Anymore? , 2013, Journal of neuropathology and experimental neurology.

[127]  P. Wesseling Classification of Gliomas , 2013 .

[128]  P. Ntziachristos,et al.  MAPping the genomic landscape of low-grade pediatric gliomas , 2013, Nature Genetics.

[129]  David T. W. Jones,et al.  Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. , 2012, Cancer cell.

[130]  Peter J. Campbell,et al.  Evolution of the cancer genome , 2012, Nature Reviews Genetics.

[131]  Timothy A. Chan,et al.  Whole exome sequencing identifies ATRX mutation as a key molecular determinant in lower-grade glioma , 2012, Oncotarget.

[132]  S. Inoue,et al.  D-2-hydroxyglutarate produced by mutant IDH1 perturbs collagen maturation and basement membrane function. , 2012, Genes & development.

[133]  Stephen P. Jackson,et al.  Chromothripsis and cancer: causes and consequences of chromosome shattering , 2012, Nature Reviews Cancer.

[134]  Alexander R. Pico,et al.  A low-frequency variant at 8q24.21 is strongly associated with risk of oligodendroglial tumors and astrocytomas with IDH1 or IDH2 mutation , 2012, Nature Genetics.

[135]  Melissa Bondy,et al.  Genome-wide association study of glioma and meta-analysis , 2012, Human Genetics.

[136]  M. Meyerson,et al.  Recurrent Hemizygous Deletions in Cancers May Optimize Proliferative Potential , 2012, Science.

[137]  R. McLendon,et al.  Frequent ATRX, CIC, FUBP1 and IDH1 mutations refine the classification of malignant gliomas , 2012, Oncotarget.

[138]  W. Hahn,et al.  Loss of ATRX, Genome Instability, and an Altered DNA Damage Response Are Hallmarks of the Alternative Lengthening of Telomeres Pathway , 2012, PLoS genetics.

[139]  Rebecca A. Ihrie,et al.  Cooperative interactions of BRAFV600E kinase and CDKN2A locus deficiency in pediatric malignant astrocytoma as a basis for rational therapy , 2012, Proceedings of the National Academy of Sciences.

[140]  N. McCarthy Metabolism: Unmasking an oncometabolite , 2012, Nature Reviews Cancer.

[141]  S. Berger,et al.  IDH mutation impairs histone demethylation and results in a block to cell differentiation , 2012, Nature.

[142]  R. Verhaak,et al.  Transformation by the R Enantiomer of 2-Hydroxyglutarate Linked to EglN Activation , 2012, Nature.

[143]  C. Sander,et al.  Mutual exclusivity analysis identifies oncogenic network modules. , 2012, Genome research.

[144]  David T. W. Jones,et al.  Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma , 2012, Nature.

[145]  Li Ding,et al.  Somatic Histone H3 Alterations in Paediatric Diffuse Intrinsic Pontine Gliomas and Non-Brainstem Glioblastomas , 2012, Nature Genetics.

[146]  J. Uhm IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype , 2012 .

[147]  E. Montgomery,et al.  Prevalence of the alternative lengthening of telomeres telomere maintenance mechanism in human cancer subtypes. , 2011, The American journal of pathology.

[148]  Yuchen Jiao,et al.  Mutations in CIC and FUBP1 Contribute to Human Oligodendroglioma , 2011, Science.

[149]  J. Campisi,et al.  Tumor Suppressor and Aging Biomarker p16INK4a Induces Cellular Senescence without the Associated Inflammatory Secretory Phenotype* , 2011, The Journal of Biological Chemistry.

[150]  R. McLendon,et al.  Altered Telomeres in Tumors with ATRX and DAXX Mutations , 2011, Science.

[151]  P. Wesseling,et al.  The Nature and Timing of Specific Copy Number Changes in the Course of Molecular Progression in Diffuse Gliomas: Further Elucidation of Their Genetic “Life Story” , 2011, Brain pathology.

[152]  G. Nikkhah,et al.  BRAF Activation Induces Transformation and Then Senescence in Human Neural Stem Cells: A Pilocytic Astrocytoma Model , 2011, Clinical Cancer Research.

[153]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[154]  J. O’Leary,et al.  BRAFV600E: Implications for Carcinogenesis and Molecular Therapy , 2011, Molecular Cancer Therapeutics.

[155]  M. Blasco,et al.  Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins , 2011, Nature Reviews Cancer.

[156]  Arul M Chinnaiyan,et al.  Metabolism unhinged: IDH mutations in cancer , 2011, Nature Medicine.

[157]  Kirsten Schmieder,et al.  Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma , 2011, Acta Neuropathologica.

[158]  Bin Wang,et al.  Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. , 2011, Cancer cell.

[159]  J. Licht,et al.  Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. , 2010, Cancer cell.

[160]  Steven J. M. Jones,et al.  ATR-X Syndrome Protein Targets Tandem Repeats and Influences Allele-Specific Expression in a Size-Dependent Manner , 2010, Cell.

[161]  M. J. van den Bent Interobserver variation of the histopathological diagnosis in clinical trials on glioma: a clinician’s perspective , 2010, Acta neuropathologica.

[162]  R. Wilson,et al.  Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. , 2010, Cancer cell.

[163]  Omar Abdel-Wahab,et al.  The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. , 2010, Cancer cell.

[164]  S. Rafii,et al.  Distinct Factors Control Histone Variant H3.3 Localization at Specific Genomic Regions , 2010, Cell.

[165]  R. O'Sullivan,et al.  Telomeres: protecting chromosomes against genome instability , 2010, Nature Reviews Molecular Cell Biology.

[166]  S. Brandner,et al.  Activated BRAF induces gliomas in mice when combined with Ink4a/Arf loss or Akt activation , 2010, Oncogene.

[167]  S. Gabriel,et al.  Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. , 2010, Cancer cell.

[168]  Hanlee P. Ji,et al.  Oncogenic BRAF mutation with CDKN2A inactivation is characteristic of a subset of pediatric malignant astrocytomas. , 2010, Cancer research.

[169]  J. Campisi,et al.  The senescence-associated secretory phenotype: the dark side of tumor suppression. , 2010, Annual review of pathology.

[170]  J. Salk Clonal evolution in cancer , 2010 .

[171]  M. Serrano,et al.  Senescence in tumours: evidence from mice and humans , 2010, Nature Reviews Cancer.

[172]  L. Liau,et al.  Cancer-associated IDH1 mutations produce 2-hydroxyglutarate , 2009, Nature.

[173]  T. de Lange How Telomeres Solve the End-Protection Problem , 2009, Science.

[174]  Melissa Bondy,et al.  Genome-wide association study identifies five susceptibility loci for glioma , 2009, Nature Genetics.

[175]  Alexander R. Pico,et al.  Variants in the CDKN2B and RTEL1 regions are associated with high grade glioma susceptibility , 2009, Nature Genetics.

[176]  Timothy D. Veenstra,et al.  Telomerase modulates Wnt signalling by association with target gene chromatin , 2009, Nature.

[177]  Jing Ma,et al.  Activation of the ERK/MAPK pathway: a signature genetic defect in posterior fossa pilocytic astrocytomas , 2009, The Journal of pathology.

[178]  P. Kleihues,et al.  IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. , 2009, The American journal of pathology.

[179]  Hisashi Tanaka,et al.  Palindromic gene amplification — an evolutionarily conserved role for DNA inverted repeats in the genome , 2009, Nature Reviews Cancer.

[180]  M. J. van den Bent,et al.  Oligodendrogliomas: molecular biology and treatment. , 2009, The oncologist.

[181]  S. Puget,et al.  IDH1 and IDH2 mutations in gliomas. , 2009, The New England journal of medicine.

[182]  F. Ducray,et al.  IDH1 and IDH2 mutations in gliomas. , 2009, The New England journal of medicine.

[183]  Judith Campisi,et al.  Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor , 2008, PLoS biology.

[184]  David T. W. Jones,et al.  Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. , 2008, Cancer research.

[185]  D. Peeper,et al.  Oncogene-Induced Senescence Relayed by an Interleukin-Dependent Inflammatory Network , 2008, Cell.

[186]  S. Joseph,et al.  Spontaneous Regression of Low-Grade Gliomas in Pediatric Patients without Neurofibromatosis , 2008, Pediatric Neurosurgery.

[187]  A. Mills,et al.  The quest for the 1p36 tumor suppressor. , 2008, Cancer research.

[188]  Jiri Bartek,et al.  An Oncogene-Induced DNA Damage Model for Cancer Development , 2008, Science.

[189]  M. Blasco,et al.  Telomere length, stem cells and aging. , 2007, Nature chemical biology.

[190]  J. Campisi,et al.  Cellular senescence: when bad things happen to good cells , 2007, Nature Reviews Molecular Cell Biology.

[191]  M. Blasco,et al.  Cellular Senescence in Cancer and Aging , 2007, Cell.

[192]  M. Malkin,et al.  Environmental risk factors for brain tumors , 2007, Current neurology and neuroscience reports.

[193]  P. Kleihues,et al.  Genetic pathways to primary and secondary glioblastoma. , 2007, The American journal of pathology.

[194]  H. Vogel,et al.  CHD5 Is a Tumor Suppressor at Human 1p36 , 2007, Cell.

[195]  C. Johannessen,et al.  A negative feedback signaling network underlies oncogene-induced senescence. , 2006, Cancer cell.

[196]  E. Shaw,et al.  A t(1;19)(q10;p10) mediates the combined deletions of 1p and 19q and predicts a better prognosis of patients with oligodendroglioma. , 2006, Cancer research.

[197]  R. Marais,et al.  Cellular senescence in naevi and immortalisation in melanoma: a role for p16? , 2006, British Journal of Cancer.

[198]  Angelo L. Vescovi,et al.  Brain tumour stem cells , 2006, Nature Reviews Cancer.

[199]  J. Shay,et al.  BRAFE600-associated senescence-like cell cycle arrest of human naevi , 2005, Nature.

[200]  B. Harding,et al.  Spontaneous regression of residual low-grade cerebellar pilocytic astrocytomas in children , 2005, Pediatric Radiology.

[201]  A. Levine,et al.  The p53 pathway: positive and negative feedback loops , 2005, Oncogene.

[202]  E. Montgomery,et al.  Telomere Length Abnormalities Occur Early in the Initiation of Epithelial Carcinogenesis , 2004, Clinical Cancer Research.

[203]  Y. Yonekawa,et al.  A population-based study of the incidence and survival rates in patients with pilocytic astrocytoma. , 2003, Journal of neurosurgery.

[204]  G. Fuller,et al.  Ink4a-Arf loss cooperates with KRas activation in astrocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt. , 2002, Cancer research.

[205]  R. DePinho,et al.  Connecting chromosomes, crisis, and cancer. , 2002, Science.

[206]  A. Nicholson,et al.  Mutations of the BRAF gene in human cancer , 2002, Nature.

[207]  Stephen Neidle,et al.  Crystal structure of parallel quadruplexes from human telomeric DNA , 2002, Nature.

[208]  J. Varley,et al.  Relative frequency and morphology of cancers in carriers of germline TP53 mutations , 2001, Oncogene.

[209]  Thea D. Tlsty,et al.  Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes , 2001, Nature.

[210]  R. Reddel,et al.  Telomere maintenance by recombination in human cells , 2000, Nature Genetics.

[211]  Lynda Chin,et al.  Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice , 2000, Nature.

[212]  G. Barger,et al.  Discrepancies in diagnoses of neuroepithelial neoplasms , 2000, Cancer.

[213]  D. Gisselsson,et al.  Chromosomal breakage-fusion-bridge events cause genetic intratumor heterogeneity. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[214]  M. Ferguson-Smith,et al.  Analysis of pilocytic astrocytoma by comparative genomic hybridization , 2000, British Journal of Cancer.

[215]  D. Hanahan,et al.  The Hallmarks of Cancer , 2000, Cell.

[216]  K. Isselbacher,et al.  Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. , 1999, Science.

[217]  Karlyne M. Reilly,et al.  Mouse models of tumor development in neurofibromatosis type 1. , 1999, Science.

[218]  Robert A. Weinberg,et al.  Creation of human tumour cells with defined genetic elements , 1999, Nature.

[219]  M. White,et al.  Absence of cancer–associated changes in human fibroblasts immortalized with telomerase , 1999, Nature Genetics.

[220]  H. Varmus,et al.  Modeling mutations in the G1 arrest pathway in human gliomas: overexpression of CDK4 but not loss of INK4a-ARF induces hyperploidy in cultured mouse astrocytes. , 1998, Genes & development.

[221]  D. Louis,et al.  Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. , 1998, Journal of the National Cancer Institute.

[222]  K. Ichimura,et al.  Distinct patterns of deletion on 10p and 10q suggest involvement of multiple tumor suppressor genes in the development of astrocytic gliomas of different malignancy grades , 1998, Genes, chromosomes & cancer.

[223]  J. Fraumeni,et al.  Multiple primary cancers in families with Li-Fraumeni syndrome. , 1998, Journal of the National Cancer Institute.

[224]  T. Kanda,et al.  Histone–GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells , 1998, Current Biology.

[225]  D. Sidransky,et al.  Role of the p16 tumor suppressor gene in cancer. , 1998, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[226]  R. Reddel,et al.  Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines , 1997, Nature Medicine.

[227]  A. Yang,et al.  Monoallelically Expressed Gene Related to p53 at 1p36, a Region Frequently Deleted in Neuroblastoma and Other Human Cancers , 1997, Cell.

[228]  M. Nistér,et al.  Induction of senescence in human malignant glioma cells by p16INK4A , 1997, Oncogene.

[229]  B. Korf,et al.  The diagnostic evaluation and multidisciplinary management of neurofibromatosis 1 and neurofibromatosis 2. , 1997, JAMA.

[230]  M. Fiscella,et al.  Wip1, a novel human protein phosphatase that is induced in response to ionizing radiation in a p53-dependent manner. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[231]  D K Pearl,et al.  Improving diagnostic accuracy and interobserver concordance in the classification and grading of primary gliomas , 1997, Cancer.

[232]  J. Shay,et al.  A survey of telomerase activity in human cancer. , 1997, European journal of cancer.

[233]  W. K. Alfred Yung,et al.  Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers , 1997, Nature Genetics.

[234]  M. Wigler,et al.  PTEN, a Putative Protein Tyrosine Phosphatase Gene Mutated in Human Brain, Breast, and Prostate Cancer , 1997, Science.

[235]  E. Pennisi New Tumor Suppressor Found--Twice , 1997, Science.

[236]  J. Shay,et al.  Telomerase activity in human brain tumours , 1995, The Lancet.

[237]  R. Reddel,et al.  Telomere elongation in immortal human cells without detectable telomerase activity. , 1995, The EMBO journal.

[238]  C B Harley,et al.  Specific association of human telomerase activity with immortal cells and cancer. , 1994, Science.

[239]  A. Craft,et al.  Prevalence and diversity of constitutional mutations in the p53 gene among 21 Li-Fraumeni families. , 1994, Cancer research.

[240]  S. Pulst,et al.  Alteration in a new gene encoding a putative membrane-organizing protein causes neuro-fibromatosis type 2 , 1993, Nature.

[241]  J. Shay,et al.  The two-stage mechanism controlling cellular senescence and immortalization , 1992, Experimental Gerontology.

[242]  J. Steitz,et al.  Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. , 1992, The EMBO journal.

[243]  J. Shay,et al.  A role for both RB and p53 in the regulation of human cellular senescence. , 1991, Experimental cell research.

[244]  F. Cleton Evolution of Cancer , 1991, British Journal of Cancer.

[245]  M. Kimura The neutral theory of molecular evolution: a review of recent evidence. , 1991, Idengaku zasshi.

[246]  P. O'Connell,et al.  A major segment of the neurofibromatosis type 1 gene: cDNA sequence, genomic structure, and point mutations , 1990, Cell.

[247]  J. Shay,et al.  Reversible cellular senescence: implications for immortalization of normal human diploid fibroblasts , 1989, Molecular and cellular biology.

[248]  D. Bigner,et al.  Specific chromosomal abnormalities in malignant human gliomas. , 1988, Cancer research.

[249]  Carol W. Greider,et al.  Identification of a specific telomere terminal transferase activity in tetrahymena extracts , 1985, Cell.

[250]  F. Alt,et al.  Transposition and amplification of oncogene-related sequences in human neuroblastomas , 1983, Cell.

[251]  R. Barnard,et al.  The classification of tumours of the central nervous system. , 1982, Neuropathology and applied neurobiology.

[252]  L. Eng,et al.  Pleomorphic xanthoastrocytoma: A distinctive meningocerebral glioma of young subjects with relatively favorable prognosis A study of 12 cases , 1979, Cancer.

[253]  P. Nowell The clonal evolution of tumor cell populations. , 1976, Science.

[254]  A M Olovnikov,et al.  A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. , 1973, Journal of theoretical biology.

[255]  A. Knudson Mutation and cancer: statistical study of retinoblastoma. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[256]  D. J. Ashley,et al.  The two "hit" and multiple "hit" theories of carcinogenesis. , 1969, British Journal of Cancer.

[257]  A. I. Spriggs,et al.  MINUTE CHROMATIN BODIES IN MALIGNANT TUMOURS OF CHILDHOOD. , 1965, Lancet.

[258]  L. Hayflick,et al.  The serial cultivation of human diploid cell strains. , 1961, Experimental cell research.

[259]  Nordling Co A New Theory on the Cancer-inducing Mechanism , 1953 .

[260]  C. Nordling A New Theory on the Cancer-inducing Mechanism , 1953, British Journal of Cancer.

[261]  B. Mcclintock,et al.  The Stability of Broken Ends of Chromosomes in Zea Mays. , 1941, Genetics.

[262]  B. Mcclintock The Production of Homozygous Deficient Tissues with Mutant Characteristics by Means of the Aberrant Mitotic Behavior of Ring-Shaped Chromosomes. , 1938, Genetics.

[263]  Todd KING'S COLLEGE HOSPITAL.: Adipose Deposit in the Muscular Fibrillœ of the Heart ; Inefficient Action of the Organ; Anasarca and Ascites; Death; Autopsy , 1853 .

[264]  D. Schadendorf,et al.  Highly Recurrent TERT Promoter Mutations in Human Melanoma , 2022 .